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1 Introduction

In the study of many-body quantum systems and other complex structures, we often encounter
large tensors. A tensor network is a powerful language for representing and manipulating these
tensors. One of the most fundamental operations in any tensor network algorithm is the Singular
Value Decomposition (SVD). It allows us to decompose a single, large tensor into a network of
smaller, more manageable tensors. This is the key to compressing information, finding canonical
representations (like in Matrix Product States), and simplifying calculations. This note will walk
you through the simple but profound idea of applying SVD to a generic tensor.

2 From Tensor to Matrix: The Reshaping Step

A tensor is a multi-dimensional array of numbers. Let’s consider a generic tensor 7' of rank-k,
which means it has k indices (or “legs” in the tensor network language). We write its components
as T, i,,...i,- This tensor is not necessarily a matrix (since a matrix has k = 2).

To use SVD, which is a tool for matrices, we must first reshape our tensor into a matrix. We
do this by partitioning its indices into two groups.

1. Choose a partition. Let’s pick a subset of the indices, S C {1,2,...,k}. The remaining
indices form the complement set, S°.

2. Combine indices. We group all the indices corresponding to S into a single “super-index,”
let’s call it a. Similarly, we group the indices in S¢ into another super-index, b.

For example, if we have a rank-4 tensor Tj, i, is.is, We could choose the partition S = {1,3} and
S¢={2,4}. Then we define:
a = (il, i3) and b= (iz,i4)

The tensor 75, i, i5,i, Can now be viewed as a matrix A with row index a and column index b:
Aa,b = Ty g insia

The dimension of the row space is the product of the dimensions of indices i1 and 3, and similarly
for the column space.



3 Performing the SVD

Now that we have a matrix A, we can perform a standard Singular Value Decomposition. The
SVD of A is given by:
A=UxVT

where:
e U is a unitary matrix (UTU = I) whose columns are the left singular vectors.
e ) is a rectangular diagonal matrix containing the non-negative singular values, o).
e VT is a unitary matrix (VIV = I) whose rows are the right singular vectors.

In index notation, the decomposition is written as:

Agp = Z Ua,AEA,,\V;b
A
The index A runs up to the rank of the matrix, which is the number of non-zero singular values.

4 Back to Tensor Networks

The final step is to interpret this matrix decomposition back into the language of tensors. We have
expressed our original tensor 7" as a sum over a new index A. This is precisely a tensor contraction!
We can split the SVD expression into two new tensors. A common choice is to absorb the singular
values into the U matrix:

Agp =3 (UapS0)(VY)
A

We can now define two new tensors, let’s call them T4 and Tp:
o (Ta)ar = Uan2x
o T)rp = V)T,b

Finally, we “un-group” the super-indices a and b to recover the original legs of our tensor:

T es, ings = O _(Ta)iesa(TB)ri¢s
X

We have successfully decomposed our original rank-k tensor T’ into two smaller tensors, T4 and
Tp, connected by a new internal index (or “bond”) A. The size of this bond, known as the bond
dimension, is determined by the number of singular values we keep. If we truncate zero (or small
and negligible) singular values, this process compresses the tensor.

5 The Diagrammatic Picture

The entire process is beautifully and intuitively captured by a tensor network diagram. Let’s

{i3,14,15}.
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In the diagram:
e The original tensor T is a single node with five legs.
e After SVD, it becomes two nodes, T4 and Tg.
e The external legs are partitioned between the two new tensors according to our choice of S.

e The new internal line connecting them represents the contracted index A. Its dimension is
the bond dimension.

This simple decomposition is the building block for nearly all advanced tensor network algorithms.



