
CHAPTER 2

Essentials of Quantum Mechanics

We begin by building up the basic ingredients of quantum mechanics. This
is not meant to be a course on quantum mechanics, and so we will proceed prag-
matically and without much fanfare. We will have the luxury of working with
finite-dimensional Hilbert spaces (if you do not know what this means, you will
soon), since this is the setting of most present applications of quantum learning
theory. Our pedagogical approach will be to revisit ordinary probability theory in
a suggestive way that naturally generalizes to quantum theory. Our exposition is
meant to be accessible to readers with a knowledge of linear algebra and probability
theory.

1. Probability theory on vector spaces

1.1. Probability distributions and their transformations

Here we will formulate probability theory on a discrete space, with some addi-
tional linear algebraic baggage that will be useful later. If we have a set of size N
we can represent a probability distribution over that set as a vector in RN given by

ωp =





p1
p2
...

pN





where pi is the probability of the ith item. We have, out of convenience, chosen an
ordering on our set of items so that we can organize the probabilities into a vector,
but of course this ordering is arbitrary. As usual, we require pi → 0 for all i since
probabilities cannot be negative, and also

∑N
i=1 pi = 1 so that the probabilities are

appropriately normalized. There is a natural way of packaging the normalization
condition. To this end, consider the row vector

ω1T =
[
1 1 · · · 1

]
.

Then
∑N

i=1 pi = 1 is equivalent to

ω1T · ωp = 1 ,

and we will use this more compact expression henceforth. It will sometimes be
useful to consider the probability simplex !N which is a subset of RN , where !N

consists of all nonnegative vectors with entries summing to one. Then we can write
ωp ↑ !N .

Next we consider a rudimentary version of dynamics. That is, what kinds of
transformations on ωp will map it into another valid probability distribution? The
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18 2. ESSENTIALS OF QUANTUM MECHANICS

simplest kind of transformation we can imagine is a linear one, so let us examine
that first. Letting M be an N ↓ N matrix, we consider the transformation

ωp→ = M · ωp ,

so that ωp → is the new probability distribution after the transformation. But what
conditions do we need to put on M such that ωp → is a bona fide probability dis-
tribution for all initial distributions ωp? Well, we need for all entries of ωp → to be
nonnegative, and for ω1T · ωp → = 1. To ensure the first property, suppose that ωp is all
zeroes except for the jth entry which equals one. (That is, we would sample the
jth object with probability 1 and never sample anything else.) To introduce some
other notation, let ωej be vector which is all zeroes except for the jth entry which
equals one. Then we have

ωp → = M · ωej =





M1j

M2j
...

MNj




.

In order for all entries of ωp
→
to be nonnegative, we evidently require Mij → 0 for all

j, and i fixed. Varying over i as well, we find the requirement that Mij → 0 for all
i, j, and so M must be a matrix with nonnegative entries. Since we also demand
that ω1T · ωp → = 1, we find the condition

ω1T · ωp → = ω1T · M · ωej = ω1T ·





M1j

M2j
...

MNj




= 1 .

That is, the jth column of M must sum up to one. Since this must hold for every
column, we find the condition

ω1T · M = ω1T . (2)

Thus a nonnegative matrix satisfying (2) will send probability vectors to probability
vectors. We honor this finding with a definition:

Definition 5 (Markov matrix). Let M be an N ↓ N matrix. We say that M is a
Markov matrix if Mij → 0 for all i, j, and ω1T ·M = ω1T . Then M maps probability
vectors to probability vectors.

A few comments are in order. In many treatments of Markov matrices, there
is a di”erent convention in which M is taken to act on probability distributions
‘to the left’, which would give the transpose our definition above. Our conventions
here are chosen to align with those of quantum mechanics, as we will see later on.

We immediately notice that Markov matrices behave nicely under composition.
Specifically, we have the useful lemma:

Lemma 6 (Composition of Markov matrices). If M1, M2, ..., Mk are Markov ma-
trices, then Mk · · · M2 · M1 is also a Markov matrix.

The proof of this useful fact follows by a short calculation using the definition
(which you should do if you have not thought it through before). The upshot of
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this lemma is that we can consider transformations like

ωp → = Mk · · · M2 · M1 · ωp

as instantiating a type of ‘circuit’, with depth k. That is, we could say the words:
starting with ωp we apply M1 followed by M2 followed by M3 and so on, and then
finally apply Mk.

Before moving on to increasing levels of sophistication, we consider a simple
example:

Example 1 (Bernoulli coin, N = 2). We now specialize to a two–outcome
space and fix the ordering so that the first coordinate is outcome 0 (“success”)
and the second is outcome 1 (“failure”). A Bernoulli distribution with success
probability ε is therefore represented by

ωpω =

[
Pr[0]
Pr[1]

]
=

[
ε

1 ↔ ε

]
, ε ↑ [0, 1].

Consider the bit–flip dynamics with flip probability ϑ ↑ [0, 1],

Mε =

[
1 ↔ ϑ ϑ

ϑ 1 ↔ ϑ

]
,

whose entries are nonnegative and whose columns each sum to 1, so Mε is a Markov
matrix in our sense. Acting on ωp produces

ωpω→
→ = Mε ωpω =

[
(1 ↔ ϑ)ε + ϑ(1 ↔ ε)
ϑε + (1 ↔ ϑ)(1 ↔ ε)

]
=↗ ε→ = (1 ↔ 2ϑ) ε + ϑ,

where ε→ = Pr→[0] is the new success probability.
Some immediate checks help build intuition. When ϑ = 0 the map is the

identity; when ϑ = 1 it deterministically flips 0 ↘ 1; and when ϑ = 1
2 it sends every

input to the uniform distribution ωp1/2 =

[
1/2
1/2

]
in one step. For any 0 < ϑ < 1,

the unique fixed point solves ε→ = ε and is ε↑ = 1
2 . (To see this, simply solve

ε↑ = (1 ↔ 2ϑ)ε↑ + ϑ for ε↑). Iterating Mε a total of k times yields exponential
mixing toward the fixed point ε↑ at rate |1 ↔ 2ϑ|:

ε(k) =
(
1 ↔ 2ϑ

)k
(
ε(0) ↔ 1

2

)
+

1

2
.

Finally, the family Mε of Markov matrices is closed under composition (illustrating
the lemma above): a short calculation shows

Mϑ Mε = Mε+ϑ↓2εϑ ,

and in particular Mk
ε = Mεeff with

ϑe! =
1 ↔ (1 ↔ 2ϑ)k

2
.

This two–state example already displays dynamics, fixed points, and circuit com-
position within the linear–algebraic language we have been developing.

Moving on, it is useful to recount a few features of probability distributions. If
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we have k probability distributions ωp1, ..., ωpk, then we can form a new probability
distribution by forming a convex combination

ωp → =
k

j=1

rj ωpj (3)

where rj → 0 and
∑k

j=1 rj = 1. To see this, notice that ωp → has nonnegative entries

and that ω1T · ωp → =
∑k

j=1 rj (ω1T · ωpj) =
∑k

j=1 rj = 1. We can interpret r1, ..., rk as a
probability distribution over k items in its own right, and say of (3) that we have
a probabilistic mixture of k probability distributions wherein we sample from ωpj

with probability rj . That is, r1, ..., rk is a probability distribution over probability
distributions. (You can use this ‘meta’ statement to impress your friends, if you
like.) To make this concrete, consider the following example:

Example 2 (Sampling two coins, N = 2). Suppose we have two Bernoulli
coins, represented by the probability vectors ωp1/2 and ωp1/3, respectively. The first
one gives heads with probability 1/2 and tails with probability 1/2, and the second
gives heads with probability 1/3 and tails with probability 2/3. Now suppose I
have both coins in my pocket in such a way that when I reach in, I grab the first
coin with probability 1/4 and the second coin with probability 3/4. Then if I reach
in and grab a coin and toss it, what is the probability that I would output heads?
This is described by the convex combination

1

4
ωp1/2 +

3

4
ωp1/3 =

[
3/8
5/8

]
,

and so evidently the probability of heads is 3/8.

So far we have only considered linear transformations on ωp that map it into
another probability distribution. What if we consider nonlinear transformations?
One example would be the nonlinear transformation

T (ωp) =





p2
1∑N

i=1 p2
i

p2
2∑N

i=1 p2
i

...
p2
N∑N

i=1 p2
i




.

Another example would be a Bayesian update. There are clearly a vast infinitude of
other possibilities as well. Among this infinitude of transformations there is a natu-
ral class that interfaces well with convex combinations of probability distributions.
In particular, suppose we mandate that T satisfies

T




k

j=1

rj ωpj



 =
k

j=1

rj T (ωpj) (4)

for any ωp1, ..., ωpk and any valid r1, ..., rk. In words, we are requiring that a transfor-
mation of a probabilistic mixture is a probabilistic mixture of transformations (and
specifically, the same transformation). Such T ’s satisfy a nice structure theorem:
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Theorem 7 (Mixture-preserving transformations are Markov matrices). Suppose
that T : !N ≃ !N is a mixture-preserving transformation, namely that (4) is
satisfied. Then there exists a Markov matrix M such that T (ωp) = M · ωp for all ωp.

Proof. Write ωp =
∑N

j=1 pj ωej . Using the mixture-preserving property of T , we
have

T (ωp) = T




N

j=1

pj ωej



 =
N

j=1

pj T (ωej) .

Let M be the matrix whose jth column is T (ωej). Then T (ωp) = M · ωp. Each column
T (ωej) is a probability vector, so Mij → 0 and ω1T · M = ω1T . Thus M is a Markov
matrix, as claimed. ↭

Mixture-preserving transformations are natural from a physical point of view.
Imagine a preparation device that, with probabilities r1, ..., rk, produces one of the
distributions ωp1, ..., ωpk by consulting some randomly tossed coins you do not get to
see. If dynamics could distinguish whether this randomization happened “before”
or “after” the transformation, then the timing of the unseen coin flips would be
observable from the output statistics alone. Requiring that they not be observable
is exactly the statement of (4).

Two simple consequences are worth keeping in mind. First, the admissible
dynamics are closed under randomized control: if with probability rj you implement
a Markov matrix Mj , then the overall map is

M → =
k

j=1

rj Mj ,

which is again a Markov matrix since ω1T · M → =
∑k

j=1 rj (ω1T · Mj) = ω1T and all
entries are nonnegative. Second, if one further insists that deterministic states are
carried to deterministic states, so that ωej never acquires additional randomness,
then each column T (ωej) must itself be a basis vector. Equivalently, M has exactly
one 1 (and zeros elsewhere) in each column. Such matrices are sometimes called
deterministic or functional Markov matrices. If in addition the mapping j ⇐≃ i(j)
is injective (no two distinct columns point to the same basis vector), then M is a
permutation matrix.

By contrast, nonlinear updates arise when you condition on a revealed out-
come and then renormalize; the rule in that case depends on which outcome was
announced, so it is not a single fixed map on !N and does not represent closed-
system dynamics. This classical discussion sets the stage for the quantum case,
which we will treat soon. (There, the state space becomes the convex set of density
operators, mixture-preserving maps become convex-linear “channels,” and the role
of Markov matrices is played by completely positive, trace-preserving maps.)

1.2. Joint distributions and tensor products

In probability theory it is essential to consider joint distributions. Here we
develop the basic operations of joint distributions in a convenient and illuminating
linear algebraic notation. First we require some additional tools on the linear
algebra side. Specifically, we will upgrade our linear algebraic toolkit to multi-linear
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algebra. The key operation will be the tensor product, which is an operation for
joining two or more vector spaces.

We will proceed by motivating the tensor product informally through simple
examples, and then give the abstract definition. It is worth paying close attention
as the tensor product will serve as an essential piece of mathematical architecture
for almost everything in quantum learning theory.

Consider two vectors ωv, ωw in RN . We denote their tensor product by ωv ⇒ ωw. To
develop what this means, consider the example below.

Example 3. Let ωv =

[
1
2

]
and ωw =

[
3
4

]
. Then their tensor product ωv ⇒ ωw is

represented by

ωv ⇒ ωw =

[
1
2

]
⇒

[
3
4

]
=





1 ·
[
3
4

]

2 ·
[
3
4

]




=





3
4
6
8



 .

In words, ωw gets ‘sucked in’ to ωv. Now let us take the tensor product in the other
order, namely ωw ⇒ ωv:

ωw ⇒ ωv =

[
3
4

]
⇒

[
1
2

]
=





3 ·
[
1
2

]

4 ·
[
1
2

]




=





3
6
4
8



 .

From this we glean that, in general, ωv ⇒ ωw ⇑= ωw ⇒ ωv. Moreover, since ωv ↑ R2 and
ωw ↑ R2, we notice that ωv ⇒ ωw ↑ R4. To this end we write ωv ⇒ ωw ↑ R2 ⇒ R2 ⇓ R4.

Example 4. Suppose ωv =

[
1
2

]
and ωw =




3
4
5



 so that ωv ↑ R2 and ωw ↑ R3.

Then

ωv ⇒ ωw =





3
4
5
6
8
10




↑ R6 ,

and we write ωv ⇒ ωw ↑ R2 ⇒ R3 ⇓ R6.

From the previous two examples we see the general rule that if ωv ↑ RN and ωw ↑ RM ,
then ωv ⇒ ωw ↑ RN ⇒ RM ⇓ RNM . So upon taking the tensor product of two vector
spaces, the dimensions multiply. We can generalize this further by contemplating
another example:
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Example 5. Let ωv =

[
1
2

]
, ωw =

[
3
4

]
, and ωu =

[
5
6

]
. Then we have

ωv ⇒ ωw ⇒ ωu = (ωv ⇒ ωw) ⇒ ωu =





3
4
6
8



 ⇒
[
5
6

]
=





15
18
20
24
30
36
40
48





and ωv ⇒ ωw ⇒ ωu ↑ R2 ⇒ R2 ⇒ R2 ⇓ R8.

The above example indicates that

RN1 ⇒ RN2 ⇒ · · · ⇒ RNk ⇓ RN1N2···Nk ,

namely that if we take the tensor product of k vector spaces then the result is a
vector space which is the product of the dimensions of the constituents.

We are now ready to define tensor products abstractly, and to really appreciate
what it means. Consider the following definition:

Definition 8 (Tensor product). Let V and W be real vector spaces. A tensor

product of V and W is a vector space V ⇒ W together with a map

⇒ : V ↓ W ≃ V ⇒ W, (v, w) ⇐≃ v ⇒ w,

that is bilinear in each argument, i.e. for all scalars a, b, c ↑ R and vectors ωv, ωw, ωu,

(aωv + b ωw) ⇒ ωu = a (ωv ⇒ ωu) + b (ωw ⇒ ωu),

ωv ⇒ (b ωw + c ωu) = b (ωv ⇒ ωw) + c (ωv ⇒ ωu),

and in particular (aωv) ⇒ ωw = ωv ⇒ (aωw) = a(ωv ⇒ ωw). Concretely, one may construct
V ⇒ W as the vector space spanned by formal symbols v ⇒ w modulo the above
bilinearity relations.

To connect this with coordinates, fix bases {ωei}N
i=1 of RN and {ωfj}M

j=1 of RM . Then

the NM simple tensors {ωei⇒ ωfj}i,j form a basis of RN⇒RM , and so dim(RN⇒RM ) =

NM . If ωv =
∑

i vi ωei and ωw =
∑

j wj
ωfj , then

ωv ⇒ ωw =


i,j

viwj (ωei ⇒ ωfj) ,

which recovers the stacking rules seen in the earlier examples and realizes the iden-
tification RN ⇒ RM ⇓ RNM .

Identifying R with the one–dimensional space spanned by 1, there are canonical
isomorphisms V ⇒ R ⇓ V ⇓ R ⇒ V given by ωv ⇒ a ⇐≃ aωv and a ⇒ ωv ⇐≃ aωv. Hence
RN ⇒ R1 ⇓ RN ⇓ R1 ⇒ RN .

Linear maps interact nicely with tensor products. If A : RN ≃ RN →
and

B : RM ≃ RM →
are linear, there is a linear map A ⇒ B : RN ⇒ RM ≃ RN → ⇒ RM →

defined by

(A ⇒ B)(ωv ⇒ ωw) = (Aωv) ⇒ (B ωw)

which in matrix form is the familiar Kronecker product.
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Remark 9 (Associativity of tensor products). For our purposes, it does not matter
whether we first form (V ⇒W ) and then tensor with U from the right, or first form
(W ⇒ U) and then tensor with V from the left. There is a canonical identification
between

(V ⇒ W ) ⇒ U and V ⇒ (W ⇒ U),

and so we will simply write

V ⇒ W ⇒ U

without worrying about parentheses. This scales to many tensor factors. For a
vector space V we write

V ↔k := V ⇒ · · · ⇒ V  
k copies

,

which has dimension (dim V )k and a basis {ωei1 ⇒ · · · ⇒ ωeik}. We will use this to
model multi–part systems: for example, a register of k N -ary variables naturally
lives in (RN )↔k ⇓ RNk

.
As a word of caution, order still matters. As we explained before, in general

we have ωv ⇒ ωw ⇑= ωw ⇒ ωv. When we want to swap the order of a tensor product we
will use the linear map SWAP : V ⇒ W ≃ W ⇒ V , acting by

SWAP · (ωv ⇒ ωw) = ωw ⇒ ωv .

In summary, associativity lets us ignore parentheses; SWAP lets us reorder factors
when needed.

Going from the abstract back to the concrete, we have the example below:

Example 6. Suppose you are faced with this mess:

(aωv + b ωw) ⇒ (cωs + dωt + e ωu) ⇒ (f ωq + g ωr) .

To expand it, what do you do? Don’t panic. If you have a long list of things to do,
just do them one at a time. Specifically in this case, use associativity to expand
the bracketed terms first:

(aωv + b ωw) ⇒ (cωs + dωt + e ωu)  ⇒(f ωq + g ωr)

= (acωv ⇒ ωs + adωv ⇒ ωt + aeωv ⇒ ωu + bc ωw ⇒ ωs + bd ωw ⇒ ωt + be ωw ⇒ ωu) ⇒ (f ωq + g ωr).

Now you can multiply through and expand the rest of the terms as

acf ωv ⇒ ωs ⇒ ωq + acg ωv ⇒ ωs ⇒ ωr + adf ωv ⇒ ωt ⇒ ωq + adg ωv ⇒ ωt ⇒ ωr

+ aef ωv ⇒ ωu ⇒ ωq + aeg ωv ⇒ ωu ⇒ ωr + bcf ωw ⇒ ωs ⇒ ωq + bcg ωw ⇒ ωs ⇒ ωr

+ bdf ωw ⇒ ωt ⇒ ωq + bdg ωw ⇒ ωt ⇒ ωr + bef ωw ⇒ ωu ⇒ ωq + beg ωw ⇒ ωu ⇒ ωr ,

which is the desired expansion.

With some basic tensor product definitions at hand, we can now leverage them
to discuss joint probability distributions in a slick vector space formalism.

Respecting historical tradition,1 suppose we have two urns, where the first urn
has N objects and the second urn has M objects. Suppose that the probability
that we select one of the N items in the first urn is described by the probability

1See Ars Conjectandi by Jacob Bernoulli, published posthumously in 1713.
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vector ωp ↑ RN , and the probability that we select one of the M items in the second
urn is described by the probability vector ωq ↑ RM . Then if we select an item from
the first urn followed by the second urn, what is the probability that we sampled
item i from the first urn and item j from the second urn? The answer is encoded
in the tensor product ωp ⇒ ωq, and in particular its (i ↔ 1)M + jth entry:

[ωp ⇒ ωq](i↓1)M+j = piqj .

We can extract this entry by dotting ωp ⇒ ωq against ωeT
i ⇒ ωeT

j , namely

(ωeT
i ⇒ ωeT

j ) · (ωp ⇒ ωq) = piqj .

The vector ωp ⇒ ωq is itself a probability vector living in !NM ⇔ RNM ; thus it is a
probability distribution on NM outcomes, as we wanted.

So far we have examined ωp⇒ωq which is a product distribution, assuming in our
example that our sampling from each of the two urns is uncorrelated. Below we
show in an example that convex combinations of tensor products can represent a
correlated, joint distribution.

Example 7. Suppose the first urn has two items (N = 2), say a ring and a
watch, and the second urn has three items (M = 3), say a tissue, a match, and a
rubber band. The urns were prepared by the ghost of Jacob Bernoulli. We are told
that with probability 1/3 he put a ring in the first urn and a rubber band in the
second urn, and with probability 2/3 he put a watch in the first urn and a match
in the second urn. Then the joint distribution over the urns is described by

1

3

[
1
0

]
⇒




0
0
1



 +
2

3

[
0
1

]
⇒




0
1
0



 =





0
0

1/3
0

2/3
0




.

This distribution does not factorize into a tensor product of two individual vectors.

We abstract this example in the following remark.

Remark 10 (Joint distributions and multi-index notation). Given k probability
spaces represented by !Ni ⇔ RNi for i = 1, ..., k, a distribution on the joint space
is represented by

!N1···Nk ⇔ RN1···Nk ⇓ RN1 ⇒ · · · ⇒ RNk .

Product (independent) distributions have the special form ωp (1)⇒ωp (2)⇒· · ·⇒ωp (k), and
general joint distributions are convex combinations of such products. For example,

if ωp (j)
i represents a distribution in RNj , then



i1,i2,...,ik

ri1i2···ik ωp (1)
i1

⇒ ωp (2)
i2

⇒ · · · ⇒ ωp (k)
ik

is a joint distribution so long as ri1i2···ik → 0 for all i1, i2, ..., ik and additionally∑
i1,i2,...,ik

ri1i2···ik = 1. Here we have used a multi-index notation, in which we are
putting subscripts on subscripts; this is to avoid notation like

∑
a,b,c,... rabc··· which

do not specify the total number of subscripts, which in our case is k. (Moreover,
there are only 26 letters of the Latin alphabet.) Multi-index notation may initially
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seem like gross notation, but you will soon grow accustomed to it, like generations
have before you.

Joint distributions interface nicely with the ω1T row vector in a number of ways.
For clarity, let us write ω1T

N to denote the all-ones row vector with N entries. Then
we have the nice identity

ω1T
N1

→ω1T
N2

→ · · · →ω1T
Nk

= ω1T
N1N2···Nk

.

Thus if ωp is a joint distribution living in !N1N2···Nk , then we have

(ω1T
N1

→ω1T
N2

→ · · · →ω1T
Nk

) · ωp = ω1T
N1N2···Nk

· ωp = 1 .

We can also use the all-one row vector to formulate a nice way of computing mar-
ginal distributions. To illustrate, we proceed with the example below.

Example 8. Consider a joint distribution on !6 ↑ R2 → R3. Let us denote
the joint distribution by ωpAB where A represents the first subsystem of two items,
and B represents the second subsystems of three items. Then we can write ωpAB as

ωpAB =





pAB(1, 1)
pAB(1, 2)
pAB(1, 3)
pAB(2, 1)
pAB(2, 2)
pAB(2, 3)




.

Suppose we want to marginalize over the second probability space (the one over
three items). Letting 1N denote the N ↓N identity matrix, we marvel at the linear
operator 12 →ω1T

3 which maps R2 →R3 ↔ R2. We marvel at it because applying the
operator to ωpAB we find

(12 →ω1T
3 ) · ωpAB =

[
pAB(1, 1) + pAB(1, 2) + pAB(1, 3)
pAB(2, 1) + pAB(2, 2) + pAB(2, 3)

]
=

[
pA(1)
pA(2)

]
= ωpA

where ωpA is the marginal distribution on the first subsystem A, which has two items.

The insight in the above example generalizes in the following way.

Remark 11 (Marginalizing any subset of subsystems). Let ωp ↗ !N1···Nk be a joint
distribution on k subsystems with sizes N1, ..., Nk. For any subset S ↘ {1, ..., k},
define the linear “marginalization” map

MS :=
k⊗

j=1

Kj = K1 → K2 → · · · → Kk , Kj =

{
1Nj if j ↗ S
ω1T

Nj
if j /↗ S

,

and so MS : RN1···Nk ↔ RProdj→SNj . Then MS ·ωp is the marginal on the subsystems
indexed by S by marginalizing over the subsystems indexed by {1, ..., k} \ S.

To summarize, we have recast ordinary probability theory (on discrete prob-
ability spaces) in a linear-algebraic language, which has motivated us to develop
the fundamentals of multi-linear algebra and tensor products. This mathemati-
cal technology certainly illuminates aspects of multi-linearity lurking in ordinary
probability theory. But our true motivation was to set up probability theory in
such a way as to make (finite-dimensional) quantum mechanics appear as a natu-
ral generalization, using many of the same ingredients. In this next section when
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we introduce quantum mechanics, we will relentlessly capitalize on parallels with
probability theory, but also take care to point out where such parallels break down.

2. Quantum theory in finite dimensions

We begin with a very brief history of quantum theory. Circa 1900 Max Planck
studied blackbody radiation, and solved an inadequacy in the extant equations by
stipulating that energy is quantized in units of his eponymous constant. Then in
1905, Einstein suggests that light itself is quantized as “photons”, providing an
explanation for the photoelectric e”ect. In the ensuing decade, Bohr makes a first
pass at quantum theory (the so-called ‘old’ quantum theory), and correctly predicts
the spectral lines of hydrogen. This first pass at quantum theory only goes so far,
and a second pass is made in the 1920’s. In 1924, de Broglie postulates that a
particle with momentum p has ‘wavelength’ ϖ = h/p, which is soon confirmed
by electron di”raction experiments. Thereafter, Heisenberg, Born, and Jordan
developed matrix mechanics in 1925 (although they did not yet understand the
connection to de Broglie). In 1926, Schrödinger leveraged de Broglie’s insight to
develop wave mechanics, and that same year showed the equivalence with matrix
mechanics. That year as well, Born gave a ‘probabilistic’ interpretation of quantum
mechanics which clarified its connections to measurable quantities in experiments.
In 1927, Heisenberg wrote down his famous uncertainty principle. Most of the
abstract mathematical foundations of quantum mechanics were consolidated by
Dirac and von Neumann in the early 1930’s, and Einstein-Podolsky-Rosen as well
as Schrödinger highlighted the importance of entanglement in 1935. The year after
in 1936, Birko” and von Neumann investigated how quantum mechanics leads to a
new form of logical reasoning that goes beyond classical Boolean logic; in hindsight
this may be regarded as the first hint of the possibility of quantum computing
(although it was not understood as such at the time).

Having completed our brief historical diegesis, we now turn to presenting the
axioms of quantum mechanics. There are various ways of ‘motivating’ the axioms
of quantum mechanics, although at some level they were guessed by very clever
people and experimentally confirmed by very clever people (sometimes in the op-
posite order). We will, however, give some intuition. But first, a word of caution.
When someone asks for a motivation for quantum mechanics in terms of classical
mechanics, this is philosophically backwards; it would be like asking for a deriva-
tion of special relativity starting from Newton’s equations. Indeed, just as special
relativity reduces to Newtonian physics in a certain regime of validity, so too does
quantum mechanics reduce to classical mechanics in a certain regime of validity.
Nonetheless, we will proceed with an idiosyncratic way of ‘guessing’ some of the
axioms of quantum mechanics starting from classical intuitions.

2.1. Mechanics on ϱp spaces: from classical to quantum

Let us begin by contemplating the salient mathematical structures undergirding
the dynamics of probability distributions discussed above. For this, it is useful to
have the following definition:

Definition 12 (Normed vector space). Let V be a vector space over a field K; we
will consider either V = RN (with K = R), or V = CN (with K = C). A normed
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vector space is a pair (V, ↖ · ↖) where ↖ · ↖ : V ≃ R↗0 is the norm which satisfies
the following three properties:

(1) (Positive definiteness) ↖ωv↖ = 0 if and only if ωv is the zero vector.
(2) (Absolute homogeneity) ↖aωv↖ = |a|↖ωv↖ for any a ↑ K and any ωv ↑ V .
(3) (Triangle inequality) ↖ωv + ωw↖ ↙ ↖ωv↖ + ↖ωw↖ for any ωv, ωw ↑ V .

Then we can define a very useful class of norms as follows:

Definition 13 (ϱp norms). The ϱp
norm, defined over RN or CN for p → 1, is

↖ωv↖p :=




N

j=1

|vj |p




1
p

. (5)

One can show that (5) is indeed a norm in the sense of Definition 12 above. (It is
immediate to verify positive definiteness and absolute homogeneity; verifying the
triangle inequality involves a more delicate proof leveraging Hölder’s inequality.)

A special case of the ϱp norm is when p = 1, giving ↖ωv↖1 =
∑N

j=1 |vj |. Then
when ωp describes a probability distribution, the normalization of probability dis-
tributions is equivalent to the condition ↖ωp↖1 = 1. Then our characterization of
Markov matrices can be equivalently phrased as follows: M is a Markov matrix if
and only if

↖M · ωp↖1 = ↖ωp↖1
for all ωp describing probability distributions. In fact, using absolutely homogeneity,
we also have the slightly weaker statement that M is a Markov matrix if and only if
↖M · ωv↖1 = ↖ωv↖1 where all entries of ωv have the same sign. But then we might ask:
what are the matrices A such that ↖A · ωv↖1 = ↖ωv↖1 for all ωv ↑ RN? Interestingly,
such matrices A, called ϱ1-isometries, are highly restricted:

Theorem 14 (ϱ1-isometries). Let K ↑ {R,C} and A ↑ KN↘N . The following are
equivalent:

(1) ↖A · ωv↖1 = ↖ωv↖1 for all ωv ↑ KN .
(2) A = P ·diag(ϑ1, . . . , ϑN ) where P is a permutation matrix and |ϑj | = 1 for

all j (so ϑj = ±1 if K = R).

In the proof below, for a vector ωv = (v1, . . . , vN ) ↑ KN we write

supp(ωv) := { k ↑ {1, . . . , N} : vk ⇑= 0 }

for its support. We say two vectors have disjoint supports if their supports are
disjoint sets.

Proof. Write ωaj := A · ωej for the jth column of A. Then ↖ωaj↖1 = ↖A · ωej↖1 =
↖ωej↖1 = 1.

Fix i ⇑= j. In the real case,

↖ωai ± ωaj↖1 = ↖A · (ωei ± ωej)↖1 = ↖ωei ± ωej↖1 = 2.

By the triangle inequality we always have ↖ωai ±ωaj↖1 ↙ ↖ωai↖1 + ↖ωaj↖1 = 2; equality
of sums forces equality coordinate-wise. Thus for every coordinate k,

|ai(k) ± aj(k)| = |ai(k)| + |aj(k)|.
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For reals, the ‘+’ equality enforces same sign (or a zero), and the ‘↔’ equality
enforces opposite sign (or a zero); both can hold only if ai(k)aj(k) = 0. Hence
supp(ωai) ∝ supp(ωaj) = ⊋.

In the complex case, use

↖ωai + ωaj↖1 = ↖ωai + iωaj↖1 = 2.

Again equality is coordinate-wise, so with z = ai(k) and w = aj(k),

|z + w| = |z| + |w|, |z + i w| = |z| + |w| .
Each equality in C holds if and only if the summands share an argument; the first
says z and w are collinear, the second says z and i w are collinear. This is impossible
unless z = 0 or w = 0. Thus the supports of distinct columns are disjoint in the
complex case as well.

We now have N nonempty, pairwise-disjoint subsets Sj := supp(ωaj) ′ {1, . . . , N}.
Therefore

N ↙
N

j=1

|Sj | =


N

j=1

Sj

 ↙ N,

so |Sj | = 1 for all j. Hence ωaj = ϑj ωeϖ(j) for some permutation ς and some ϑj ⇑= 0.
From ↖ωaj↖1 = |ϑj | = 1 we get |ϑj | = 1, and writing P for the permutation matrix
of ς gives A = P · diag(ϑ1, . . . , ϑN ). The converse is immediate. ↭
Remark 15. Equivalently, the ϱ1-isometries are the signed permutation matri-

ces when K = R and the monomial matrices with unimodular entries (i.e. their
absolute value equals one) when K = C. If one further assumes Aij → 0, then
necessarily ϑj = 1 for all j, so A is a permutation matrix.

The upshot of Theorem 14 is that the only linear maps that preserve the ϱ1 norm
on all of RN (or CN ) are signed-permutation (or monomial) matrices. Thus, if we
insist on global ϱ1–isometries, the dynamics amount only to relabeling coordinates
and multiplying by signs (or phases). A nontrivial theory appears when we restrict
attention to the positive cone and, in particular, to the probability simplex !N :
requiring a linear map M to send probability vectors to probability vectors yields
precisely the column–stochastic (Markov) matrices introduced above. Moreover,
Theorem 14 generalizes as follows:

Theorem 16 (ϱp-isometries for p ⇑= 2). Let K ↑ {R,C} and A ↑ KN↘N . Then for
p → 1 and p ⇑= 2, the following are equivalent:

(1) ↖A · ωv↖p = ↖ωv↖p for all ωv ↑ KN .
(2) A = P ·diag(ϑ1, . . . , ϑN ) where P is a permutation matrix and |ϑj | = 1 for

all j (so ϑj = ±1 if K = R).

A proof can be found in [Aar04] (although the original proof goes back to at least
Banach). The theorem above shows that for p ⇑= 2 the only linear ↖ · ↖p–isometries
are monomial matrices, so there is no norm-preserving linear dynamics that mixes
coordinates beyond permutations (and multiplicative sign or phase factors). The
case p = 1 is special only in that, after restricting to the positive cone, we can relax
from “isometry on all vectors” to the weaker requirement “maps the probability
simplex to itself”; this yields the rich class of Markov matrices. For p > 1 and
not equal to 2, no analogous stochastic family exists. By contrast, when p = 2 the
isometries form a continuous group providing genuinely nontrivial linear dynamics.
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We have already explicated how the p = 1 case corresponds to classical mechanics;
we will see that the p = 2 case corresponds to quantum mechanics.

First let us give a structure theorem for the ϱ2-isometries. We start with the
following definition.

Definition 17 (Orthogonal and unitary groups). A matrix R ↑ RN↘N is an or-

thogonal matrix if and only if it satisfies RT R = RRT = 1. This set of matrices is
closed under multiplication and inverses, and forms the orthogonal group O(N).
Similarly, a matrix U ↑ CN↘N is a unitary matrix if and only if it satisfies
U †U = UU† = 1. This set of matrices is closed under multiplication and inverses,
and forms the unitary group U(N).

Then our structure theorem for ϱ2-isometries is as follows.

Theorem 18 (ϱ2-isometries). Let R ↑ RN↘N . The following are equivalent.

(1) ↖R · ωv↖2 = ↖ωv↖2 for all ωv ↑ RN .
(2) R ↑ O(N).

Similarly, let U ↑ CN↘N . The following are equivalent.

(1) ↖U · ωv↖2 = ↖ωv↖2 for all ωv ↑ CN .
(2) U ↑ U(N).

We defer the proof until later, when additional mathematical tools will allow us to
present it more simply.

In the same way that

ωp → = Mk · · · M2 · M1 · ωp

for the Mi being Markov matrices constitutes ϱ1-preserving dynamics on !N ⇔ RN ,
then e.g.

ω#→ = Uk · · · U2 · U1 · ω# (6)

for ω#, ω#→ ↑ CN and the Ui being unitary matrices constitutes ϱ2-preserving dynam-
ics on CN . Just as probability distributions ωp ↑ !N ⇔ RN play a starring role in
classical mechanics, the wavefunction plays a starring role in quantum mechanics.
In its simplest form, a wavefunction is a vector ω# ↑ CN . (The fact that ω# lives
on CN as opposed to RN is an empirical fact with measurable consequences.) In
particular, the wavefunction will provide a description of the ‘state’ of a quantum
system, and so often the words ‘wavefunction’ and ‘state’ are used interchangeably.

Quantum mechanics is essentially the study of dynamics of the form (6) on
CN , along with additional physical input that relates that dynamics to observable
reality. Other physical inputs can constrain the form of the unitaries which are
used. Before delving into these ‘physical’ considerations below, it is first worth
explicating a bit more of the mathematical structure of ϱ2 spaces, since they will
be our stomping grounds for the entirety of this book.2

So far we have introduced the structure of an ϱ2 norm on CN , in Definitions 12
and 13 (taking p = 2 in the latter). A nice feature of the ϱ2 norm is that it gives us
a very nice additional structure on CN , namely an inner product space. We define
inner product spaces below, and then explain how the ϱ2 norm allows us to define
a canonical inner product space.

2They are also, more generally, the stomping grounds for our physical reality.
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Definition 19 (Inner product and inner product space). Let K ↑ {R,C} and let
V be a vector space over K. An inner product on V is a map

∞ ·, ·∈ : V ↓ V ≃ K
such that for all u, v, w ↑ V and a, b ↑ K:

(1) (Conjugate symmetry) ∞v, w∈ = ∞w, v∈.
(2) (Sesquilinearity) ∞u, av + bw∈ = a ∞u, v∈ + b ∞u, w∈ and ∞au + bv, w∈ =

a ∞u, w∈ + b ∞v, w∈. Equivalently, the inner product is linear in its second
argument and conjugate–linear in its first.3

(3) (Positive definiteness) ∞v, v∈ → 0, with equality if and only if v = 0.

A pair (V, ∞ ·, ·∈) is called an inner product space. The inner product induces a
norm by

↖v↖ :=


∞v, v∈ .

To fully bring you into the fold, we introduce a slightly more refined notion of inner
product spaces due to Hilbert.

Definition 20 (Hilbert space). A (complex) Hilbert space is a complex inner
product space (H, ∞·, ·∈) that is complete4 with respect to the induced norm ↖v↖ =

∞v, v∈.

Remark 21 (Finite-dimensional case and notation). When dim H < ∋, complete-
ness is automatic, so every complex inner product space is a Hilbert space. In this
book we work exclusively with finite-dimensional Hilbert spaces, typically written
H ⇓ CN equipped with the ϱ2 inner product. We will often write ω# ↑ H for a state
vector (“wavefunction”), and linear maps on H are represented by matrices; those
that preserve the inner product are precisely the unitary operators U : H ≃ H.

As such, an inner product space can be thought of as a normed space, with addi-
tional structure. Below we explain how the ϱ2 norm is induced by an inner product.

Definition 22 (ϱ2 inner product). On CN we take the standard inner product to
be the ω2 inner product

∞v, w∈ := v†w =
N

j=1

vjwj ,

which on RN reduces to vT w. The induced norm is ↖v↖ =


∞v, v∈ =
(∑N

j=1 |vj |2
)1/2

=

↖ωv↖2, which is precisely the ϱ2 norm.

A useful notion is (Hermitian) conjugation, which we define below.

Definition 23 (Conjugation and Hermitian adjoint). For a complex number a ↑ C,
its complex conjugate is a↑. For a vector ωv ↑ CN , write ωv↑ for entrywise conjugation
and define the conjugate transpose (or Hermitian conjugate) by

ωv† := (ωv↑)T .

3This is the convention commonly used in physics. Over R it reduces to bilinearity.
4“Complete” means that every Cauchy sequence in H (with respect to the metric d(u, v) =

→u↑ v→ induced by the inner product) converges to a limit in H: for all ω > 0 there exists N such
that m,n ↓ N implies →xm ↑ xn→ < ω, and there is x ↔ H with →xn ↑ x→ ↗ 0. Intuitively, there
are no ‘holes’ in the space.



32 2. ESSENTIALS OF QUANTUM MECHANICS

For a matrix A ↑ CM↘N , write A↑ for entrywise conjugation and define its Her-

mitian adjoint (conjugate transpose) by

A† := (A↑)T ↑ CN↘M .

Equivalently, using the ϱ2 inner product ∞u, v∈ = u†v =
∑N

j=1 u↑

jvj, we have that

A† is the unique linear map satisfying

∞x, Ay∈ = ∞A†x, y∈ for all x ↑ CM , y ↑ CN .

The adjoint obeys, for all compatible A, B and scalars φ, ↼ ↑ C,
(AB)† = B†A†, (φA + ↼B)† = φ↑A† + ↼↑B†, (A†)† = A.

Over R, complex conjugation is trivial (a↑ = a), so A† = AT . Additionally, a
matrix H is Hermitian (or self–adjoint) if H† = H.

Having defined the ϱ2 inner product as well as the Hermitian adjoint, we can
rephrase Theorem 18 as:

Theorem 24 (ϱ2-isometries, reprise). Let R ↑ RN↘N . The following are equiva-
lent.

(1) ∞Rωv, Rωv∈ = ∞ωv,ωv∈ for all ωv ↑ RN .
(2) R ↑ O(N).

Similarly, let U ↑ CN↘N . The following are equivalent.

(1) ∞Uωv, Uωv∈ = ∞ωv,ωv∈ for all ωv ↑ CN .
(2) U ↑ U(N).

With our inner product definitions at hand, we are now equipped to provide a
simple proof of Theorem 24 and thus Theorem 18.

Proof. We give the argument for CN ; the real case is analogous with † replaced
by T and i replaced by ±1.

Assume (1): ∞Uωv, Uωv∈ = ∞ωv,ωv∈ for all ωv ↑ CN . Write

∞Uωv, Uωv∈ = ∞ωv, U†U ωv∈,
so for every ωv,

∞ωv, (U†U ↔ 1)ωv∈ = 0.

Set H := U †U ↔ 1. Then ∞ωv, Hωv∈ = 0 for all ωv. For arbitrary ωx, ωy we compute
(using conjugate–linearity in the first argument and linearity in the second):

0 = ∞ωx + ωy, H(ωx + ωy)∈ = ∞ωx, Hωx∈ + ∞ωx, Hωy∈ + ∞ωy, Hωx∈ + ∞ωy, Hωy∈
= ∞ωx, Hωy∈ + ∞ωy, Hωx∈,

0 = ∞ωx + iωy, H(ωx + iωy)∈ = ∞ωx, Hωx∈ + i∞ωx, Hωy∈ ↔ i∞ωy, Hωx∈ + ∞ωy, Hωy∈
= i∞ωx, Hωy∈ ↔ i∞ωy, Hωx∈.

Solving these two equations gives ∞ωx, Hωy∈ = ∞ωy, Hωx∈ = 0 for all ωx, ωy. Fixing ωy and
taking ωx = Hωy yields ↖Hωy↖2 = 0, so Hωy = 0 for all ωy and hence H = 0. Therefore
U †U = 1. In particular, the columns of U are orthonormal, so U is invertible and
U↓1 = U †; hence also UU† = 1 and U ↑ U(N), establishing (2).

Conversely, if U ↑ U(N) then U†U = 1, and for all ωv,

∞Uωv, Uωv∈ = ∞ωv, U†U ωv∈ = ∞ωv,ωv∈ ,

which is (1). This completes the proof. ↭
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Let us pause to summarize what we have done so far in this Subsection. First,
we recognized that dynamics on (finite) probability distributions is dynamics that
preserves ϱ1. We then contemplated what dynamics would look like that preserves
ϱp for p > 1, and found that the only interesting option is p = 2, for which unitary
dynamics does the job. We then explained that the ϱ2 is produced by a natural inner
product, which also interfaces nicely with unitary dynamics. Below, we will show
how ϱ2-preserving dynamics is essentially (finite-dimensional) quantum mechanics,
along with some additional mathematical baggage which relates the dynamics to
observable measurements. Then let us commence below with the axioms of quantum
mechanics.

2.2. The axioms of quantum mechanics

Quantum mechanics was presented essentially its contemporary form by Paul
Dirac in 1930 [Dir81] and placed on a rigorous Hilbert space footing by John von
Neumann in 1932 [VN18]. The reader might be surprised to discover that Dirac’s
book [Dir81] remains foundational for quantum-mechanics courses nearly a century
later.

2.2.1. Bra-ket notation

Before giving the axioms, we introduce Dirac’s famous bra-ket notation,
much beloved by physicists (and sometimes unfairly despised by mathematicians).
Consider the CN , viewed as a Hilbert space with ϱ2 inner product. In the future,
we will simply say “consider the Hilbert space H ⇓ CN”. Recall that if ω↽, ω⇀ ↑ H
then their inner product is

∞ω↽, ω⇀∈ =
N

j=1

↽↑

j ⇀j = ω↽† · ω⇀ .

The far right-hand side demonstrates that we can think of the inner product as a
bilinear map from H↑ ⇒ H ≃ C, where H↑ is the space of row vectors. There is a
canonical isomorphism from H to H↑ given by Hermitian conjugation. This is all
just a fancy way of saying the following: to take the inner product ∞ω↽, ω⇀∈ of ω↽ and
ω⇀, we just take the Hermitian conjugate of ω↽ and dot that with ω⇀.

The far left-hand side of 2.2.1 takes the notational form of a ‘bracket’. Dirac
suggests that we enclose vectors in H by | · ∈, so that instead of writing ω⇀ we write

|⇀∈. Such an object is called a ‘ket’. In similar spirit, a column vector ω⇀† ↑ H↑ is

enclosed by ∞ · |, so that instead of writing ω↽† we write ∞↽|. Such an object is called
a ‘bra’. Then bras and kets are related via Hermitian conjugation, namely

|↽∈† = ∞↽| .
Finally, we can put together bras and kets to form

∞↽|⇀∈ := ∞ω↽, ω⇀∈ =
N

j=1

↽↑

j ⇀j = ω↽† · ω⇀ ,

which is a...(drum roll please) ‘bra-ket’ ! Get it?5

5Famously, Dirac was not known for his sense of humor.
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Besides being somewhat whimsical, Dirac’s bra-ket notation is in fact extremely
useful. The reason is not so much mathematical, but rather visual. As you your-
self will experience, bra-ket notation is visually suggestive of how to organize and
manipulate certain equations (especially compared with arrows and daggers), and
eases the mind towards simplifying complicated expressions in multi-linear algebra.
That is, Dirac found a notation which resonates with the structure of our minds.

Let us develop Dirac’s notation a bit further. In addition to forming ‘inner
products’ ∞↽|⇀∈ = ω↽† · ω⇀, we can also form ‘outer products’ |⇀∈∞↽| = ω⇀ · ω↽†. Here
|⇀∈∞↽| is evidently a rank 1, N↓N matrix. Then the trace of this matrix is evidently

tr(|⇀∈∞↽|) = ∞↽|⇀∈ .

Since Hermitian conjugation for a scalar is the same as complex conjugation, we
have the useful identity

(∞↽|⇀∈)† = (∞↽|⇀∈)↑ = ∞⇀|↽∈ ,

where we observe that the ↽ and ⇀ have switched sides.
It is useful to show a few examples to get you fully acquainted with bra-ket

notation. Consider the standard orthonormal basis {ωei}N
i=1 of CN , which we denote

by {|i∈}N
i=1 in our new notation. The orthonormality of the basis elements can be

expressed as

∞i|j∈ = ⇁ij :=


1 if i = j

0 if i ⇑= j
,

where ⇁ij is called the Kronecker delta. Recalling that the identity matrix is

1 =
∑N

i=1 ωei · ωeT
i , in bra-ket notation we have

1 =
N

i=1

|i∈∞i| .

Then given a state |↽∈, we have

|↽∈ = 1|↽∈ =


N

i=1

|i∈∞i|


|↽∈ =
N

i=1

|i∈ ∞i|↽∈  
=:ϱi

=
N

i=1

↽i|i∈ , (7)

where ↽i are the coe$cients of |↽∈ in the |i∈-basis. (Note also that (∞i|↽∈)† =
∞i|↽∈)↑ = ∞↽|i∈ = ↽↑

i , and so the coe$cients of ∞↽| in the ∞i|-covector basis are ↽↑

i .)
Similarly, for a matrix M , we have

M = 1 · M · 1 =


N

i=1

|i∈∞i|


M




N

j=1

|j∈∞j|



 =
N

i,j=1

|i∈ ∞i|M |j∈  
=:Mij

∞j| =
N

i,j=1

Mij |i∈∞j| ,

(8)

where Mij are the matrix elements of M in the |i∈-basis. As a check of our notation,
let us compute M |↽∈ using the far-right hand sides of both (7) and (8):

M |↽∈ =




N

i,j=1

Mij |i∈∞j|




N

k=1

↽k|k∈ =
N

i,j,k=1

Mij↽k|i∈ ∞j|k∈  
=ςjk

=
N

i=1




N

j=1

Mij↽j



 |i∈ .
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So we see that the coe$cients of M |↽∈ in the |i∈-basis are
∑N

j=1 Mij↽j , exactly as
expected using the standard rules of matrix multiplication.

For our final flourish, we present the spectral theorem in finite dimensions in
bra-ket notation. The spectral theorem will play a crucial role in the formulation
of quantum mechanics.

Theorem 25 (Spectral theorem for normal matrices in finite dimensions). Let
A : H ≃ H be a linear operator on a finite dimensional complex Hilbert space
H ⇓ CN . The following are equivalent

(1) A is normal, meaning A†A = AA†.
(2) There exists an orthonormal basis of eigenstates |v1∈, . . . , |vN ∈ and com-

plex numbers ϖ1, . . . , ϖN such that A =
∑N

j=1 ϖj |vj∈∞vj | Equivalently, if
U is the unitary with columns |vj∈ then U†AU = diag(ϖ1, . . . , ϖN ).

We will break up the proof into a few lemmas:

Lemma 26. Let A : H ≃ H be a normal matrix for H ⇓ CN . Then A has at least
one eigenvector |v∈. Moreover, if A|v∈ = ϖ|v∈, then A†|v∈ = ϖ↑|v∈.

Proof. By the fundamental theorem of algebra the characteristic polynomial pA(ϖ) =
det(A ↔ ϖ1) has a complex root. If ϖ is such a root, then A ↔ ϖ1 has a non-trivial
nullspace, meaning that A has an eigenvalue ϖ and at least one nonzero eigenstate
|v∈ with A|v∈ = ϖ|v∈. Without loss of generality we take |v∈ to be normalized so
that ∞v|v∈ = 1. Now notice that

∞v|A†

  
=φ↑≃v|

|v∈ = ϖ↑ . (9)

Recall that the Cauchy-Schwarz inequality |∞↽|⇀∈| ↙


∞↽|↽∈


∞⇀|⇀∈ achieves equal-
ity only when |↽∈ is proportional to |⇀∈. Assuming A is normal, we have

|ϖ| = |∞v|A†|v∈|

↙


∞v|v∈


∞v|A†A|v∈

↙


∞v|AA†|v∈
= |ϖ| ,

where we have used Cauchy-Schwarz in the first equality and normality of A in
the equality thereafter. We thus see that Cauchy-Schwarz is tight in the above
setting, implying that A†|v∈ is proportional to |v∈. In light of (9), we find that
A†|v∈ = ϖ↑|v∈, and so |v∈ is an eigenstate of A† with eigenvalue ϖ↑. ↭
Lemma 27. Let A : H ≃ H be a normal matrix for H ⇓ CN . If A has two
eigenvectors |v∈, |w∈ with distinct eigenvalues ϖ, µ, then ∞v|w∈ = 0, i.e. |v∈ and |w∈
are orthogonal.

Proof. Without loss of generality we can take ∞v|v∈ = ∞w|w∈ = 1. Using Lemma 26,
A†|w∈ = µ↑|w∈. Then

(ϖ ↔ µ)∞v|w∈ = ∞(A ↔ µ1)v | w∈ = ∞v | (A† ↔ µ↑1)w∈ = 0 ,

and so we find ∞v|w∈ = 0. Thus eigenstates with distinct eigenvalues are orthogonal.
↭
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Lemma 28 (Invariance of an eigenspace and its orthogonal complement). Let A
be a normal operator on a finite–dimensional complex Hilbert space H and let

Eφ := ker
(
A ↔ ϖ1

)

be the ϖ–eigenspace of A. Then Eφ and E⇐

φ are each invariant under both A and
A†. In particular, the restriction

A

E↓

ω

is normal on the Hilbert space E⇐

φ .

Proof. By Lemma 26, if |y∈ ↑ Eφ then A†|y∈ = ϖ↑|y∈. Now let |x∈ ↑ E⇐

φ and
|y∈ ↑ Eφ. Then we have ∞y|A|x∈ = ∞A†y|x∈ = ϖ↑∞y|x∈ = 0. Since ∞y|A|x∈ = 0
for every |y∈ ↑ Eφ, we have A|x∈ ↑ E⇐

φ . Thus A leaves E⇐

φ invariant. The same
calculation with A and A† interchanged shows A† leaves E⇐

φ invariant as well.
Trivially A leaves Eφ invariant and from the first step A† leaves Eφ invariant too.

Finally set B := A

E↓

ω
. Since both A and A† leave E⇐

φ invariant, the adjoint

of B with respect to the inner product on E⇐

φ is B† = A†

E↓

ω
. Hence

B†B =
(
A†A

)
E↓

ω
=

(
AA†

)
E↓

ω
= BB†,

so B is normal on E⇐

φ . ↭

With the above lemmas at hand, we finally turn to the proof of Theorem 25.

Proof of Theorem 25. We prove (1) ↗ (2) by induction on N . The case N = 1
is immediate. Assume the claim holds for all dimensions smaller than N .

By Lemma 26 the operator A has an eigenvalue ϖ and a nonzero eigenstate.
Let Eφ = ker(A ↔ ϖ1) and choose an orthonormal basis {|v1∈, . . . , |vr∈} of Eφ. By
Lemma 28 the orthogonal complement E⇐

φ is invariant under both A and A†. Hence
the restriction

B := A

E↓

ω

is a normal operator on the Hilbert space E⇐

φ whose dimension is N ↔ r. By the
induction hypothesis there exists an orthonormal basis {|vr+1∈, . . . , |vN ∈} of E⇐

φ
consisting of eigenstates of B, hence of A. Together with {|v1∈, . . . , |vr∈} this gives
an orthonormal eigenbasis of H. Writing A in this basis yields

A =
N

j=1

ϖj |vj∈∞vj | ,

with ϖj = ϖ for j ↙ r and ϖj equal to the eigenvalues of B for j > r. This proves
(2).

For (2) ↗ (1) we compute

A† =
N

j=1

ϖ↑

j |vj∈∞vj | and A†A =
N

j=1

|ϖj |2 |vj∈∞vj | = AA† ,

and so A is normal. This completes the proof. ↭

Remark 29 (Hermitian and unitary cases). If A = A† then every ϖj is real and A =∑
j ϖj |vj∈∞vj |. If A is unitary then every ϖj has |ϖj | = 1 and A =

∑
j eiωj |vj∈∞vj |
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As an application, consider the following definition.

Definition 30 (Projector). A projector P on H is a Hermitian idempotent: P =
P † = P 2. Equivalently, P △ 0 and its eigenvalues lie in {0, 1}.

Hermiticity implies that all of the eigenvalues of P are real and positive semi-
definiteness implies that all of the eigenvalues are nonnegative. Then P 2 = P
means that the eigenvalues are either 0 or 1. Supposing H ⇓ CN , we can use the
spectral decomposition to write P as

P =
r

i=1

1 · |vi∈∞vi| +
N

i=r+1

0 · |vi∈∞vi| =
r

i=1

|vi∈∞vi|

for some orthonormal basis {|vi∈}N
i=1, where r is the rank of the projector. Then P

is a projector onto the r-dimensional subspace of H spanned by {|vi∈}r
i=1. We can

check that P⇐ = 1↔ P is also a projector onto the orthogonal complement.
Having covered the essence of bra-ket notation, we turn to presenting the ax-

ioms of quantum mechanics a la Dirac (with some refinements).

2.2.2. The axioms

Here we give the standard axioms of quantum mechanics, with some commen-
tary. The axioms describe the basic mathematical objects of quantum theory, and
tether them to observable reality. In the form presented below, the axioms may
seem somewhat abstract, and we will discuss this unusual feature shortly. We have
tailored the axioms to the finite-dimensional setting for clarity.

(1) (Quantum states fully describe a system at fixed time.) At a
fixed moment in time, a quantum system about which we have maximal
information is fully described by some state vector |↽∈ with unit norm
living in a Hilbert space H.

(2) (Time evolution of a closed system is unitary.) If a quantum system
is closed (i.e. it is not interacting with any external system) and starts in
an initial state |↽0∈, then at any later time T the state |↽T ∈ will be related
to the original one by some unitary, that is |↽T ∈ = U |↽0∈ for some unitary
U that may depend on T .

(3) (Physical properties have associated projectors.) Any measurable
physical property (such as “spin-up along the z-axis”, or “the particle is
in region R”) has an associated projector P . Such an operator P is an
example of an observable.

(4) (Measurement and the Born rule.) Suppose we have a property cor-
responding to a projector P , and measure whether or not a system with
state vector |↽∈ (with unit norm) has that property. Then the probabil-
ity that we measure |↽∈ to have the given property is ∞↽|P |↽∈. This is
called the Born rule. If |↽∈ is measured to have the property, then after
measurement the new state of the system is

P |↽∈
∞↽|P †P |↽∈

=
P |↽∈
∞↽|P |↽∈

,

which also has unit norm (assuming P |↽∈ ⇑= 0, in which case we would
never have measured |↽∈ to have the given property anyway.)
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Now we have a number of comments to make in order to unpack the axioms. The
first two axioms were motivated by our previous discussions, in which quantum
mechanics is framed as norm-preserving dynamics on ϱ2. The first axiom codifies
that a (normalized) vector in a Hilbert space contains everything there is to know
about a quantum state, and the second axioms explains that the dynamics of an
isolated system is described by unitary dynamics. Unitary dynamics is reversible
since (i.e. unitary matrices are invertible), and so in a closed system the future is
completely determined by the past and the past is completely determined by the
future. An interesting feature of the second axiom is that it does not tell us which
unitaries we should use. Indeed, given a classical system, we might wonder what
kinds of quantum unitary dynamics can reproduce the the classical dynamics in the
appropriate regime. This is a subtle question which goes beyond the axioms, and
requires additional empirical input.

The first axiom’s proviso “about which we have maximal information” deserves
explanation. Consider flipping an unbiased coin to decide whether to prepare a sys-
tem in state |↽0∈ or |↽1∈. After the flip, the system is in state |↽0∈ with probability
1/2 or state |↽1∈ with probability 1/2. This probabilistic description reflects our
classical ignorance, not any fundamental quantum uncertainty. The system is def-
initely in one state or the other; we simply do not know which. There is a useful
formalism for handling such incomplete knowledge, which we will introduce later.

The second axiom’s restriction to “closed” systems is similarly important. A
closed system does not interact with any external environment. If such interac-
tions were present, we would need to account for our incomplete knowledge of the
environment, which we will address later. When a system couples to an external
environment, its dynamics can become non-unitary: information leaks irreversibly
from our system into the environment, where it becomes inaccessible to us. Despite
being non-unitary, these dynamics can be nicely characterized.

While the first and second axioms specify the basic mathematical objects at
play, the third and fourth axioms tether those mathematical objects to empirical
reality. This is di”erently structured than e.g. Newton’s axioms of classical me-
chanics, which specify properties like position and momentum but do not explain
what it means to measure them, or how to do so.6

Now we turn to the third axiom. The third axiom assigns yes/no properties of a
quantum system to linear subspaces of the Hilbert space, via projectors onto those
subspaces. For instance, the property ‘the spin points up in the z-direction’ corre-
sponds to some projector P . The opposite property corresponds to the projector
P⇐ = 1↔ P onto the orthogonal complement. If we have a collection of properties
corresponding to projectors P1, . . . , Pk, we call them compatible if the correspond-
ing subspaces are mutually orthogonal, i.e. PiPj = 0 for i ⇑= j. This orthogonality
implies [Pi, Pj ] = 0. Under orthogonality, if a state answers ‘yes’ to one property

6Part of the reason is that position and momentum, at least in some informal sense, were
already known to empiricists in Newton’s time. Thus people already knew how to measure them.
Interestingly, as we all know, one can use Newton’s laws to build devices to better measure position
and momentum. You might wonder if this would lead to a circular argument: can we use devices,
built using principles from Newton’s laws, to then do experiments to test Newton’s laws? In short,
the answer is ‘yes’, if we (correctly) conceive of such experiments as testing the consistency of
Newton’s laws with empirical reality. Indeed, since measurements of quantities in Newton’s theory
require Newton’s theory for their specification and possibly design, and there is no clear sense in
which one can use empirical findings to test Newton’s laws ex nihilo.
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(i.e. Pi|↽∈ = |↽∈), it automatically answers ‘no’ to all others (i.e. Pj |↽∈ = 0 for
j ⇑= i). The projectors P1, . . . , Pk are complete if their corresponding subspaces
span all of H, which is equivalent to P1 + · · · + Pk = 1. Completeness means that
a state will always answer ‘yes’ to at least one property. Then compatibility and
completeness together mean that the state will answer ‘yes’ to exactly one property
in the list (and thus ‘no’ to all others in the list). The following remark captures
some useful nomenclature.

Remark 31 (Hermitian observables). Let P1, . . . , Pk correspond to compatible and
complete properties. Suppose that my detector registers the real number aj to in-
dicate ‘yes’ for property j. (For instance, if the jth property is ‘the particle is at
position j’, then the detector might just output the number j for the position.) Then
we can construct the Hermitian observable

A =
k

j=1

aj Pj (10)

which encodes measurement outcomes with respect to our list of properties. In
particular,

∞↽|A|↽∈ =
k

j=1

aj ∞↽|Pj |↽∈ =
k

j=1

aj Prob[measure outcome j] ,

where in the last equality we used the Born rule from the fourth axiom. The resulting
number is the expectation value of the output of our detector. Since by the spectral
theorem all Hermitian operators A can be written in the form (10) for some choice of
compatible and complete properties, we call Hermitian operators observables, with
the understanding that their physical interpretation in terms of properties comes
from their spectral decomposition.

A consequence of our discussion above is that certain properties may be in-
compatible, i.e. correspond to non-orthogonal subspaces. For instance, properties
corresponding to projectors P and Q are said to be incompatible if [P, Q] ⇑= 0. In
this case the two measurements do not admit a common eigenbasis, so in general
one cannot ascribe sharp values to both properties simultaneously. Typically, if
a state has a definite value for the property corresponding to P , then measuring
the property corresponding to Q will yield (in light of the fourth axiom) proba-
bilistic results, and the act of measurement can disturb the system so that P is no
longer definite. This lack of joint sharpness is the essence of incompatibility, under-
lies the uncertainty principle, and is one of the distinguishing features of quantum
mechanics vis-à-vis classical mechanics.

The fourth axiom is, in a sense, the most mysterious. While the third ax-
ioms abstractly explains the relationship between properties of a system and the
quantum state of a system, the fourth axiom tethers these properties to proba-
bilistic observable outcomes. To begin, recall that we said that a state |↽∈ has
the property corresponding to P if P |↽∈ = |↽∈, and so not have the property if
(1 ↔ P )|↽∈ = P⇐|↽∈ = |↽∈ (or equivalently P |↽∈ = 0). So far we have accounted
for the possibilities P |↽∈ = |↽∈ or 0, but if |↽∈ is neither in the subspace corre-
sponding to P or orthogonal to it, then P |↽∈ ⇑= |↽∈ and ⇑= 0. The Born rule tells us
that we should interpret the norm squares of the projection of |↽∈ into P , namely
∞↽|P †P |↽∈ = ∞↽|P |↽∈, as the probability that |↽∈ has that property. More peculiar
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is that when we a$rmatively measure |↽∈ to have that property, the |↽∈ assumes

the new state P |ϱ⇒▽
≃ϱ|P |ϱ⇒

. This state now has the property, since

P · P |↽∈
∞↽|P |↽∈

=
P |↽∈
∞↽|P |↽∈

Said another way, if we measure a state to a$rmatively have a property (whether
or not it definitely had the property before), it subsequently assumes that prop-
erty. This is di”erent from classical mechanics: for example, classical mechanics
stipulates that if we measure a particle to have position x then it definitely had
position x before. In quantum mechanics, by contrast, measuring a particle to be in
position x just tells us that the particle is in position x now, even though it might
not ‘definitively’ have had that property before.

We notice another peculiarity of the fourth axiom, which is that the map

|↽∈ ⇐↔≃ P |↽∈
∞↽|P |↽∈

(11)

is not in general unitary (unless P = 1 in which case the map is the identity since
|↽∈ has unit norm). This would appear to violate the second axiom, which neces-
sitates unitary dynamics. However, we were careful in the second axiom to specify
that unitary dynamics happens for closed systems; in ordinary circumstances, the
measurement apparatus is external to the system that it interrogates, and so the
non-unitary of (11) is not in conflict with the second axiom. However, the fourth
axiom tempts us to consider the following: if we described the detector (which
itself is quantum-mechanical) as part of the closed system, then the total detector-
system dynamics must be unitary; then can the fourth axiom somehow be derived
from the other three? This question is both challenging and profound. Its core dif-
ficulty is that the first three axioms do not speak of probability whereas the fourth
axioms does speak of probability; as such, the question posed would mandate that
probability is emergent in quantum mechanics. There have been a vast number of
attempts to weaken the fourth axiom or to in some sense ‘derive’ it from the other
three (which often involves covertly bringing in a weakening of the fourth axiom
anyway). For our purposes, we can think of the fourth axiom is pragmatic, in that
it tells us what happens, in practice, when we measure a quantum system with an
external measurement device.7

Having abstractly discussed the axioms, some examples are in order.

Example 9 (Dynamics and projective measurements for a single qubit).
We work in the two-dimensional Hilbert space H ⇓ C2 with the computational basis

7Related to the previous footnote, we might wonder how we can test quantum mechanics as
a theory if we require quantum theory to build the measurement apparatus needed for the tests
themselves. As before, the answer is that we are testing the consistency of quantum mechanics,
and its alignment with empirical reality. One cannot generally test quantum mechanics with
detectors solely intelligible through Newtonian mechanics, i.e. you cannot solely use classical to
test quantum (see [Mah18] for a quantum cryptographic wrinkle in this story). But it is fine to
use quantum to test quantum, so long as it all works out empirically. And it very much does.
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{|0∈, |1∈} where |0∈ :=

[
1
0

]
and |1∈ :=

[
0
1

]
. We introduce the Pauli matrices8

X =

[
0 1
1 0

]
= |0∈∞1| + |1∈∞0|

Y =

[
0 ↔i
i 0

]
= ↔i |0∈∞1| + i |1∈∞0|

Z =

[
1 0
0 ↔1

]
= |0∈∞0| ↔ |1∈∞1|.

They are Hermitian, satisfy X2 = Y 2 = Z2 = 1, and obey

[ςj , ςk] = 2i ϑjk↼ ς↼, {ςj , ςk} = 2 ⇁jk 1,

where (ς1, ς2, ς3) = (X, Y, Z). Their eigenvalues are ±1, with Z|0∈ = |0∈ and
Z|1∈ = ↔|1∈.

Measuring “spin along z” corresponds to the compatible, complete pair of pro-
jectors

P0 = |0∈∞0| =
1+ Z

2
, P1 = |1∈∞1| =

1↔ Z

2
.

Likewise, “spin along x” has eigenstates |±∈ := 1
⇑
2
(|0∈ ± |1∈) with projectors

P (x)
+ = |+∈∞+| =

1+ X

2
, P (x)

↓
= |↔∈∞↔| =

1↔ X

2
.

More generally, for any unit vector n̂ = (nx, ny, nz) ↑ R3 we have

P (n̂)
±

=
1± n̂·ως

2
, n̂·ως := nxX + nyY + nzZ,

which indeed satisfy the properties of projectors.
For dynamics, consider unitary rotations generated by the Pauli matrices. For

any unit vector n̂ and real angle ε, define

Rn̂(ε) := exp


↔ i

ε

2
n̂·ως


= cos


ε

2


1↔ i sin


ε

2


n̂·ως.

Physically, Rn̂(ε) is the time-t propagator of a closed qubit with Hamiltonian H =
”
2 n̂·ως and ε = % t. That is, Rn̂(ε) can be written as e↓iHt for the above choices of
H and t.

Suppose we prepare the qubit in the +1 eigenstate of Z, namely |↽0∈ = |0∈.
If the system evolves under the Hamiltonian H = ”

2 Y for time t, the unitary
U(t) = Ry(ε) acts with ε = % t. Acting on |0∈ and using Y |0∈ = i|1∈, the evolved
state is

|↽t∈ = cos
(

ω
2

)
|0∈ + sin

(
ω
2

)
|1∈.

Now consider measuring in the Z basis. The Born rule with projectors P0, P1

gives

pZ(0 | t) = cos2
(

ω
2

)
, pZ(1 | t) = sin2

(
ω
2

)
.

8The hardest one to remember is Y , in particular the placement of the minus sign in the
matrix elements. High energy physicist Howard Georgi has a useful mnemonic: the ‘minus i’ is
lighter so it floats all the way to the top. Now hopefully you will never forget where the minus
sign goes.
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If outcome 0 is observed, the state collapses to |0∈; if outcome 1 is observed, it
collapses to |1∈.

If instead we measure in the X basis, the probabilities are

pX(± | t) = 1
2 (1 ± ∞↽t|X|↽t∈) .

Since ∞↽t|X|↽t∈ = sin ε, we find

pX(+ | t) = 1+sin ω
2 , pX(↔ | t) = 1↓sin ω

2 .

To connect with the Bloch sphere, define for any |↽∈ the triple

ωr = (∞X∈, ∞Y ∈, ∞Z∈) ↑ R3.

For the state |↽t∈, we obtain ωr(t) = (sin ε, 0, cos ε), a unit vector rotating about the
y-axis. The Born rule in this language becomes

Pr[outcome ± along n̂] =
1 ± n̂ · ωr

2
.

Armed with our basic examples, we next examine some additional mathematical
structures in quantum mechanics.

2.3. Additional mathematical structures

Here we will introduce some additional mathematical apparatus which we can
view as additional tools for the applications of the axioms of quantum mechanics
presented above.

2.3.1. Tensor products and density matrices

We now carry the tensor–product technology into the quantum setting and in-
troduce the operator language that lets us handle classical uncertainty and open–system
e”ects in a clean way. When two systems are modeled by Hilbert spaces HA ⇓ CNA

and HB ⇓ CNB , their composite is described by the tensor product

HAB := HA ⇒ HB ⇓ CNANB .

Choose orthonormal bases {|i∈A})NA
i=1 and {|j∈B}NB

j=1. The product kets {|i∈A ⇒
|j∈B}i,j form an orthonormal basis of HAB . As in the classical case, linear maps
respect tensoring. If XA acts on HA and YB acts on HB , then

(XA ⇒ YB)
(
|↽∈A ⇒ |⇀∈B

)
= (XA|↽∈A) ⇒ (YB |⇀∈B).

Operations on a single part are written XA ⇒ 1B or 1A ⇒ YB .
A pure state |#∈ ↑ HAB is called a product state if it factors as |#∈ =

|↽∈A⇒|⇀∈B . Otherwise it is entangled. The following normal form is indispensable.

Theorem 32 (Schmidt decomposition). For any unit vector |#∈ ↑ HA ⇒ HB there
exist orthonormal sets {|k∈A} and {|k∈B} together with nonnegative numbers {ϖk}
that sum to one such that

|#∈ =
r

k=1


ϖk |k∈A ⇒ |k∈B , r ↙ min{NA, NB} .

The number r is uniquely defined and is called the Schmidt rank.
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This is really just another way of stating the linear algebraic fact that every NA↓NB

matrix (in this case the entries of |#∈ reshaped into such a matrix) has a singular
value decomposition, so we defer the proof until a bit later.

Up to this point, our description of a single system has used a unit vector
|↽∈. That choice corresponds to maximal information. In many situations there
is additional classical uncertainty. Perhaps a device prepares |↽j∈ with probability
rj . It is convenient to package such ensembles into a single object, the density
operator (or density matrix)

ρ :=


j

rj |↽j∈∞↽j | ↑ S(H), (12)

which is Hermitian, positive semidefinite, and satisfies tr(ρ) = 1. In fact, any
operator which is Hermitian, positive semidefinite, and satisfies tr(ρ) = 1 can be
written in the form (12), and so we define:

Definition 33 (Density operator). A density operator ρ ↑ S(H) is a linear
operator on H which satisfies ρ = ρ†, tr(ρ) = 1, and ρ △ 0.

We say that a state is pure when ρ = |↽∈∞↽|, equivalently ρ2 = ρ and tr(ρ2) = 1,
and otherwise it is mixed. A pure state corresponds to a rank 1 density matrix,
and a mixed state corresponds to rank greater than 1. The Born rule extends
linearly. Specifically, for a projector P ,

Pr[“yes” on P given ρ] = tr(Pρ),

and for an observable A,

E↽[A] = tr(Aρ).

Upon a projective measurement with projectors Pj , two kinds of updates occur. If
we condition on the outcome j, then

ρ ⇐↔≃ PjρPj

tr(Pjρ)
.

If the outcome is forgotten, then

ρ ⇐↔≃


j

PjρPj ,

which removes coherences between the corresponding subspaces.
Joint states admit a notion of marginalization that mirrors our classical ω1T

trick. Given ρAB on HA ⇒ HB , the state of A alone is the partial trace over B:

ρA := trB(ρAB) ↑ S(HA).

In coordinates with respect to any orthonormal basis {|j∈B},

trB(ρAB) =


j

(
1A ⇒ ∞j|

)
ρAB

(
1A ⇒ |j∈

)
. (13)

The map trB is characterized by the identity

tr
[
(XA ⇒ 1B)ρAB

]
= tr

[
XA trB(ρAB)

]
for all XA ,

so it really is the quantum version of taking a marginal. If ρAB is diagonal in
the product basis, (13) reduces exactly to summing out the B index. The identity
trB(ρAB) = ρA is the quantum sibling of marginalization by dotting probability
vectors with with ω1T , as appeared in our earlier discussion.
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Two corollaries are immediate from the Schmidt decomposition. First, if |#∈ is
a pure vector on AB and ρAB = |#∈∞#|, then ρA = trB(ρAB) and ρB = trA(ρAB)
share the same nonzero eigenvalues. The state |#∈ is entangled if and only if either
reduced state is mixed, equivalently if and only if the Schmidt rank is strictly
greater than 1. Second, every mixed state can be realized as the marginal of a pure
state on a larger space. Given a decomposition ρA =

∑
k ϖk|k∈∞k|, the vector

|&∈AR =


k


ϖk |k∈A ⇒ |k∈R

on an auxiliary space HR satisfies trR(|&∈∞&|) = ρA. This construction is called a
purification.

With the above notations at hand, we can finally give a proof of the Schmidt
decomposition. As mentioned above, it is really just a repackaging of the singu-
lar value decomposition, but it is instructive to go through the argument in the
quantum language above.

Proof of Theorem 32. Let |#∈ ↑ HA⇒HB be a unit vector. Form the rank-one
projector

ρAB := |#∈∞#|
and the reduced state on A

ρA := trB(ρAB) ↑ S(HA).

Then ρA is Hermitian, positive semidefinite, and satisfies tr(ρA) = 1. By the
spectral theorem there exist an orthonormal set {|k∈A}r

k=1 and numbers ϖk → 0
with

∑r
k=1 ϖk = 1 such that

ρA =
r

k=1

ϖk |k∈A∞k| ,

where r = rank(ρA) ↙ NA.
For each k with ϖk > 0 define a vector in HB by

|k̃∈B :=
1▽
ϖk

(∞k|A ⇒ 1B) |#∈ .

We first check orthonormality. For k, ϱ with ϖk, ϖ↼ > 0 we compute

∞k̃|ϱ̃∈ =
1▽

ϖkϖ↼
∞#|

(
|k∈∞ϱ|A ⇒ 1B

)
|#∈

=
1▽

ϖkϖ↼
∞k| ρA |ϱ∈ =

1▽
ϖkϖ↼

ϖ↼ ⇁k↼ = ⇁k↼ ,

so {|k̃∈B}r
k=1 is an orthonormal set in HB . Hence r ↙ NB as well.

Next we claim that |#∈ =
∑r

k=1

▽
ϖk |k∈A ⇒ |k̃∈B . Let us define

|&∈ :=
r

k=1


ϖk |k∈A ⇒ |k̃∈B ,

and compare the two vectors by projecting onto A. For any m in an orthonormal
basis of HA that extends {|k∈A}r

k=1 we have

(∞m|A ⇒ 1B) |#∈ =

▽
ϖm |m̃∈B if ϖm > 0

0 if ϖm = 0
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by construction. The same identities hold with |#∈ replaced by |&∈. Therefore

(∞m|A ⇒ ∞⇀|B)
(
|#∈ ↔ |&∈

)
= 0

for every m and every |⇀∈ ↑ HB . Since such product bras span (HA ⇒ HB)↑, it
follows that |#∈ = |&∈.

Finally observe the reduced state on B,

ρB := trA(ρAB) =
r

k=1

ϖk |k̃∈B∞k̃| ,

so the nonzero spectra of ρA and ρB agree and equal {ϖk}. The number r is
therefore the common rank of ρA and ρB , which gives r ↙ min{NA, NB}.

We have produced orthonormal sets {|k∈A} and {|k̃∈B} and nonnegative num-
bers {ϖk} that sum to one such that

|#∈ =
r

k=1


ϖk |k∈A ⇒ |k̃∈B ,

which is the desired form. ↭
Remark 34 (Uniqueness and degeneracies). The multiset of nonzero coe!cients
{ϖk} is uniquely determined by |#∈ since it is the spectrum of ρA and also of ρB.
The orthonormal families {|k∈A} and {|k̃∈B} are unique up to phases when the ϖk

are distinct. Within a degenerate eigenspace one may apply a unitary rotation on A
and the same conjugate rotation on the corresponding span on B without changing
the state |#∈.

Now we turn to some examples.

Example 11 (Embedding classical probability into quantum states). Fix
the computational basis {|i∈}N

i=1 of CN . A classical distribution ωp = (p1, . . . , pN ) ↑
!N is encoded as the diagonal density matrix

ρcl(ωp) =
N

i=1

pi |i∈∞i|.

A measurement in this basis with projectors Pi = |i∈∞i| returns outcome i with
probability tr(Piρcl) = pi, matching the classical rule.

Example 12 (Bell state, reduced states, and entanglement). Consider
two qubits with computational basis |0∈, |1∈. We will write |00∈ as a shorthand for
|0∈ ⇒ |0∈, and similarly for |11∈. The maximally entangled vector

|&+∈ =
1▽
2

(|00∈ + |11∈) , ρAB = |&+∈∞&+| ,

has reduced states

ρA = trB(ρAB) =
1

2
1, ρB = trA(ρAB) =

1

2
1 .

Each qubit by itself looks completely random, yet the pair together sits in a definite
pure state. Local mixedness together with global purity is a signature of entangle-
ment and has no classical analogue.
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In summary, tensor products allow us to assemble composite systems, while
density matrices enable us to represent both quantum superposition and classical
randomization within a single calculus. The partial trace serves as the quantum
marginalization operator, mirroring our earlier ω1T trick. Together, these tools pro-
vide a unified linear-algebraic framework for handling open systems, correlations,
and measurements on subsystems.

2.3.2. POVMs and channels

We now broaden the two pillars introduced so far, namely unitary time evo-
lution and projective (yes/no) measurements, into the general language of quan-
tum channels and POVMs (positive operator-valued measures). This framework
cleanly captures open-system dynamics (interaction with an environment) and the
most general measurement statistics allowed by quantum mechanics. The picture
to keep in mind is simple: attach an ancilla (the “apparatus” or “environment”),
evolve unitarily on the larger space, and then either (i) forget the ancilla (a chan-
nel), or (ii) read the ancilla (a measurement). Everything that happens to a system
can be modeled this way.

First we consider dynamics in the form of quantum channels. Fix a system
Hilbert space HS ⇓ Cd (here the subscript ‘S’ stands for ‘system’). In practice a
system rarely evolves in isolation; it can interact with an external register HE ⇓ Cd→

prepared in some state ρE (here the subscript ‘E’ stands for ‘environment’). If the
joint closed dynamics is unitary USE , then any initial system state ρS evolves as

ρS ⇐↔≃ E [ρS ] := trE

(
USE(ρS ⇒ ρE)U †

SE

)
.

From the cyclicity of trace and tr(ρE) = 1, we immediately get tr(E [ρS ]) = tr(ρS),
i.e. trace preservation. Moreover, tensoring with an arbitrary ancilla and applying
the above form shows complete positivity : (IdA ⇒ E)[X] △ 0 for every positive X
on HA ⇒ HS .9

Definition 35 (Quantum channel). A quantum channel (or quantum process)
on HS is a linear map E : S(HS) ≃ S(HS) that is completely positive and trace-
preserving (CPTP).

The dilation form above is not just an example; it is universal:

Theorem 36 (Stinespring dilation). Every CPTP map E on HS ⇓ Cd admits a
representation of the above form for some environment dimension d→, environment
state ρE, and unitary USE that are fixed independently of the input ρS.

We defer the proof of this since we need an additional structural result about
quantum channels.

A convenient “matrix-element” form drops out when ρE is pure, say ρE =
|0∈∞0|. Expanding USE in an orthonormal basis {|i∈E} and defining the Kraus
operators

Ki := ∞i|USE |0∈ ↑ Cd↘d,

9Positivity alone would require E[X] ↘ 0 whenever X ↘ 0 on HS ; complete positivity de-
mands the same after adjoining any spectator system A. Physically, this guarantees the map
never creates negative probabilities even on half of an entangled state.
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we obtain the operator-sum (Kraus) representation

E [ρ] =


i

Ki ρ K†

i ,


i

K†

i Ki = 1.

Conversely, any family {Ki} obeying the completeness relation defines a CPTP
map. The Kraus representation is nonunique: {Ki} and {

∑
j uijKj} (with u uni-

tary) describe the same channel. These facts are formalized and proved in the
following theorem:

Theorem 37 (Kraus decomposition). Let E : S(HS) ≃ S(HS) be CPTP on a
d–dimensional Hilbert space HS ⇓ Cd. Then there exist operators K1, . . . , Kr on
HS with

E [X] =
r

i=1

Ki X K†

i for all X,
r

i=1

K†

i Ki = 1,

where r ↙ d2. Conversely, any finite family {Ki} obeying
∑

i K†

i Ki = 1 defines
a CPTP map by the same formula. The representation is nonunique: if U is any
unitary and K →

i :=
∑

j UijKj, then {K →

i} yields the same channel.

Proof. To begin, recall the Choi-Jamio’lkowski isomorphism. Fix an orthonormal
basis {|j∈}d

j=1 of HS and define the (unnormalized) maximally entangled vector

|%∈ :=
d

j=1

|j∈ ⇒ |j∈ ↑ HS ⇒ HS .

The Choi matrix of E is

JE := (Id ⇒ E)(|%∈∞%|) =
d

j,k=1

|j∈∞k| ⇒ E
(
|j∈∞k|

)
.

By complete positivity we know that JE △ 0. Moreover, one can check that for any
X on HS we have

E [X] = tr1

(XT ⇒ 1) JE


, (14)

where tr1 is the partial trace over the first tensor factor. This “reconstruction
identity” follows by expanding X in the basis {|j∈∞k|}.

Next observe that since JE △ 0 it admits a decomposition into rank–one pro-
jectors,

JE =
r

i=1

|vi∈∞vi|

where |vi∈ ↑ HS ⇒ HS , and r = rank(JE) ↙ d2. Each vector |vi∈ can be viewed as
defining an operator Ki : HS ≃ HS via the canonical “vectorization” correspon-

dence: if |vi∈ =
∑

a,b v(i)ab |a∈ ⇒ |b∈, then

Ki =


a,b

v(i)ab |b∈∞a|.

One can verify directly that for every X,

tr1

(XT ⇒ 1) |vi∈∞vi|


= KiXK†

i .



48 2. ESSENTIALS OF QUANTUM MECHANICS

Combining this with (14), we find

E [X] =
r

i=1

KiXK†

i ,

which is precisely the operator–sum form.
It remains to check the normalization. Since E is trace–preserving, for all ρ we

have

tr(ρ) = tr(E [ρ]) =
r

i=1

tr(KiρK†

i ) = tr
(
ρ

r

i=1

K†

i Ki

)
.

Because this holds for all density operators ρ, it follows that
∑

i K†

i Ki = 1.
Conversely, suppose we start with any collection of operators {Ki} satisfying∑

i K†

i Ki = 1. The map

E [X] =


i

KiXK†

i

is clearly linear. Trace preservation follows from the same computation above,
and complete positivity is immediate: for any ancilla system A and any positive
operator Z on HA ⇒ HS , we have

(IdA ⇒ E)[Z] =


i

(1A ⇒ Ki) Z (1A ⇒ Ki)
† △ 0.

Finally, note that the Kraus representation is not unique. If u = (uij) is any
unitary matrix and we define K →

i =
∑

j uijKj , then



i

K →

iXK →†

i =


j

KjXK†

j ,


i

K →†

i K →

i =


j

K†

j Kj = 1,

so {Ki} and {K →

i} describe the same channel. ↭

Remark 38 (Minimal Kraus number). The number r of Kraus operators can always
be chosen as r = rank(JE) ↙ d2. This number is minimal; any other representation
can be obtained by enlarging the list with zero operators and applying a unitary
rotation among them.

Having established the Kraus decomposition, we can now establish Stinespring
dilation:

Proof of Theorem 36. By the Kraus decomposition, choose operators K1, . . . , Kr

on HS with r ↙ d2 such that

E [ρ] =
r

i=1

Ki ρ K†

i and
r

i=1

K†

i Ki = 1.

Let us introduce an environment Hilbert space HE ⇓ Cr with orthonormal basis
{|i∈E}r

i=1 and define an isometry

V : HS ↔≃ HS ⇒ HE , V |↽∈ :=
r

i=1

Ki|↽∈ ⇒ |i∈E .
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Because
∑

i K†

i Ki = 1, we have V †V = 1; indeed, for all |⇀∈, |↽∈ ↑ HS ,

∞⇀|V †V |↽∈ =
r

i=1

∞⇀|K†

i Ki|↽∈ = ∞⇀|↽∈.

Taking the partial trace over E then recovers the channel:

trE

(
V ρV †

)
= trE






i,j

KiρK†

j ⇒ |i∈∞j|



 =


i

KiρK†

i = E [ρ].

To express V using a unitary on system plus environment with a fixed en-
vironment state, fix a distinguished vector |0∈E ↑ HE and identify HS with the
d–dimensional subspace HS ⇒ |0∈E ⇔ HS ⇒ HE . Define USE on this subspace by

USE

(
|↽∈ ⇒ |0∈E

)
:= V |↽∈

for all |↽∈ in HS . Since V is an isometry, this prescription maps an orthonormal
basis of HS ⇒ |0∈E to an orthonormal set in HS ⇒HE . Extend that partial isometry
to a unitary USE on all of HS ⇒HE by completing orthonormal bases on the domain
and codomain and defining USE to map one basis to the other. Consequently,

E [ρ] = trE

(
V ρV †

)
= trE

(
USE (ρ ⇒ |0∈∞0|) U †

SE

)
,

which is precisely the stated dilation with environment state ρE = |0∈∞0| and envi-
ronment dimension d→ = r. The unitary USE and the state ρE are determined by
the chosen Kraus family for E and therefore are fixed independently of the input ρ.
This completes the proof. ↭

Remark 39 (Minimal and nonunique dilations). If the Kraus family is chosen to be
minimal (with r = rank(JE)), then d→ = r is the minimal environment dimension.
Any two Kraus representations {Ki} and {K →

i} related by a unitary mixing K →

i =∑
j uijKj yield dilations whose isometries di”er by a unitary on the environment:

V → = (1 ⇒ u) V . Allowing a mixed ρE entails no extra generality, since any mixed
state can be purified by enlarging the environment.

Next we make some additional remarks about quantum channels.

Remark 40 (Composition and randomized control). Channels are closed under
composition and convex combination. If E and F are channels, then so is F ̸ E.
And if with classical probabilities rj you apply Ej, the average map

∑
j rj Ej is again

a channel. Thus the set of channels is a convex monoid under composition.

Remark 41 (Heisenberg picture). The adjoint map E↑ acts on observables and
satisfies

tr
(
E [ρ] A

)
= tr

(
ρ E↑[A]

)
, E↑[1] = 1 .

In Kraus form, E↑[A] =
∑

i K†

i AKi. We will use this duality to shuttle between
“state evolution” and “observable evolution.”

Having discussed general dynamics, we now turn out attension to general mea-
surements. Projective measurements are special cases of more general procedures
obtained by attaching an apparatus, evolving unitarily, and reading an outcome on
the apparatus. Let {|i∈A}N

i=1 be an orthonormal basis for the apparatus and let U
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act on system+apparatus. If the apparatus is initialized in |0∈A and we measure it
in the {|i∈A} basis, the probability of outcome i on input ρ is

p(i) = tr(Fi ρ) , Fi := M†

i Mi, Mi := ∞i|U |0∈,
with

∑
i Fi = 1 by unitarity.

Definition 42 (POVM). A positive operator-valued measure (POVM) on HS

is a finite collection of positive semidefinite operators {Fi}N
i=1 obeying

∑
i Fi = 1.

Given a state ρ, the Born rule assigns outcome probabilities p(i) = tr(Fiρ).

The operators Fi are sometimes called e!ects. When Fi = Pi are orthogonal pro-
jectors that sum to 1 we recover the projective measurements from the axioms.
In general, many distinct physical procedures can realize the same POVM statis-
tics. One convenient realization chooses measurement operators (one set among
many)

Mi with M†

i Mi = Fi,

and then the post-measurement state conditioned on outcome i is

ρ ⇐↔≃ Mi ρ M†

i

tr(Fiρ)
.

The family {Ii}i with Ii[ρ] := MiρM†

i is called a quantum instrument; it records
both the probabilities and the (normalized) output states. Forgetting the outcome
yields the average channel

∑
i Ii.

As with channels, there is a universal dilation theorem for POVMs:

Theorem 43 (Naimark dilation). Every POVM {Fi} on HS can be realized as a
projective measurement on a larger space: there exist an auxiliary Hilbert space HA,
an isometry V : HS ≃ HS ⇒HA, and orthogonal projections {(i} on HA such that

Fi = V †(1⇒ (i)V and p(i) = tr
(
Fiρ

)
= tr

[
(1⇒ (i) V ρV †

]
.

Remark 44 (Rank-one refinement). Every POVM admits a refinement to rank-one
e”ects. Diagonalize each Fi =

∑
j ϖij |vij∈∞vij | and regard the collection {Fi,j :=

ϖij |vij∈∞vij |}i,j as a new POVM. Coarse-graining its outcomes by summing over j
reproduces the original statistics:



j

tr(Fi,jρ) = tr(Fiρ).

Thus, without loss of generality, one may work with rank-one POVMs when conve-
nient.

To concretize the formalism, we record two examples.

Example 13 (Unsharp qubit measurement). For a qubit with Pauli vector
ως = (X, Y, Z) and a unit vector n̂ ↑ R3, the two-outcome e”ects

F (ϑ,n̂)
±

=
1± η n̂·ως

2
, 0 ↙ η ↙ 1,

form a POVM. The parameter η is a sharpness: η = 1 gives the projective mea-
surement along n̂, while smaller η yields noisy readout with probabilities

p(±) = tr
(
F (ϑ,n̂)
±

ρ
)

= 1
2

(
1 ± η n̂ · ωr

)
,
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where ωr = (∞X∈, ∞Y ∈, ∞Z∈) is the Bloch vector of ρ.

Example 14 (Embedding classical dynamics into a channel). Classical
column-stochastic matrices are naturally realized as quantum channels that act
classically on the computational basis and erase coherence. Fix an orthonormal
basis {|i∈}N

i=1 and let M = (Mij) be column-stochastic (Mij → 0 and
∑

i Mij = 1
for each j). Define Kraus operators

Ki|j =


Mij |i∈∞j|.

Then

EM [ρ] =


i,j

Ki|j ρ K†

i|j ,


i,j

K†

i|jKi|j =


j

(

i

Mij

)
|j∈∞j| = 1,

so EM is CPTP. On diagonal inputs ρcl(ωp) =
∑

j pj |j∈∞j| we recover the classical
update

EM

[
ρcl(ωp)

]
=



i,j

Mijpj |i∈∞i| = ρcl(M · ωp),

while for j ⇑= k the coherence |j∈∞k| is sent to 0 because each Kraus term carries the
same input label on both sides. Thus EM is a “classicalizing” channel: it dephases
in the computational basis and then applies the Markov update to the resulting
distribution.

We have seen that the familiar tools of unitary evolution and projective mea-
surements represent only the simplest quantum operations. Real quantum systems
demand a richer framework: we enlarge the Hilbert space with ancillary systems,
apply unitary evolution to the combined system, then either trace out the an-
cilla (yielding quantum channels) or measure it (yielding POVMs). This procedure
generates the most general dynamics and measurement statistics that quantum me-
chanics allows. We have explained that quantum channels are completely positive
trace-preserving (CPTP) linear maps, characterized by the Kraus representation or
Stinespring dilation. POVMs are sets of positive operators that sum to the iden-
tity, understood through Naimark’s theorem. But the conceptual heart is simple:
we compose systems, evolve them unitarily, and then selectively forget or record
information.

This unified framework will prove essential for understanding real quantum
devices; indeed, in the real world, noise is inevitable, information is incomplete, and
systems interact with environments beyond our control. Rather than limitations to
work around, these general operations become the natural language for describing
quantum processes in practice.

3. A taste of quantum many-body physics

We now turn to many–body systems built from n qubits. The ambient Hilbert
space is the n–fold tensor product

H := (C2)↔n ⇓ C2n .

It is convenient to fix the computational basis {|0∈, |1∈} on each site and to use the
Pauli operators X, Y, Z discussed above. To streamline notation, we introduce a



52 2. ESSENTIALS OF QUANTUM MECHANICS

shorthand: for 1 ↙ i ↙ n we write

Xi := 1↔(i↓1) ⇒ X ⇒ 1↔(n↓i),

and similarly for Yi and Zi. Products such as ZiZj are understood to mean Zi ⇒Zj

with identities on all other sites, which we will not display explicitly.
More generally, a Pauli string on n qubits is a tensor product

P = ςa1 ⇒ · · · ⇒ ςan , ςak ↑ {1, X, Y, Z },

and its weight is the number of non-identity factors,

w(P ) := |{ k : ςak ⇑= 1 }|,
while its support is the set supp(P ) of sites where ςak ⇑= 1. Two elementary com-
mutation facts will be used repeatedly: Pauli matrices on di”erent sites commute,
while distinct Pauli matrices on the same site anticommute. Equivalently, Pauli
strings P and Q either commute or anticommute, with

PQ = (↔1)Nanti(P,Q) QP,

where Nanti(P, Q) counts the number of sites where both act nontrivially with
di”erent Pauli matrices.

With this notation in hand, we can define Hamiltonians. A Hamiltonian on H
is a Hermitian operator H = H†. In units ⫅̸ ≡ 1, the closed–system time evolution
is

U(t) = e↓ iHt, |#(t)∈ = U(t) |#(0)∈.
Since H is Hermitian, its spectrum is real. We denote its smallest eigenvalue by E0

(the ground energy) and the corresponding eigenspace by the ground space. A
Hamiltonian is called k–local if it decomposes as

H =


a

Ha , w(Ha) ↙ k for every term Ha,

i.e. each interaction acts nontrivially on at most k sites. In the qubit setting one
often expands H in the Pauli–string basis,

H =


⇀

h⇀ P⇀ , w(P⇀) ↙ k,

with real coe$cients h⇀. To express geometric locality, we can place the n qubits
on the vertices V of a graph G = (V, E). A geometrically k–local Hamiltonian has
each Ha supported on a connected region of at most k vertices (for k = 2, typically
on edges (i, j) ↑ E). For example, on a line G = {1, . . . , n} with edges (i, i + 1), a
nearest–neighbor two–local Hamiltonian has the form

H =
n↓1

i=1

Hi,i+1 +
n

i=1

Hi,

with Hi,i+1 acting only on sites i, i + 1 and Hi acting on site i.
The canonical playground for these ideas is the (ferromagnetic) transverse–field

Ising model (TFIM) on a graph G = (V, E):

HTFIM(J, h) = ↔ J


(i,j)⇓E

ZiZj ↔ h


i⇓V

Xi, J → 0, h → 0.

The first term lowers the energy when neighboring Z–spins align, while the second
term lowers the energy for qubits pointing in the x–direction (the |+∈ eigenstate of
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X). Thus the two terms compete, and since Z and X do not commute, the model
is genuinely quantum. The model is 2–local and geometrically local on G.

Two limiting regimes are exactly solvable and already illustrative. In the classi-
cal limit h = 0, all terms commute. Ground states maximize each ZiZj , so for J > 0
they are the two fully aligned product states |0 · · · 0∈ and |1 · · · 1∈, with two–fold
degeneracy. Excitations are domain walls: a bond with anti–aligned neighbors
costs energy 2J (on an open chain; with periodic boundary conditions, domain
walls come in pairs costing 4J total). In the opposite paramagnetic limit J = 0,
each site independently minimizes ↔hXi, with a unique ground state |+∈↔n where
|+∈ = (|0∈ + |1∈)/

▽
2. A single spin flip to |↔∈ costs energy 2h.

Between these limits, the terms fail to commute, which is the source of genuinely
quantum behavior. The model enjoys a Z2 symmetry generated by the global
“spin–flip” operator

P :=
∏

i⇓V

Xi,

under which Zi ⇐≃ ↔Zi while Xi ⇐≃ Xi. Since [P, HTFIM] = 0, the Hamiltonian
preserves this symmetry. For small h/J the ground space on large graphs approx-
imately breaks the symmetry, exhibiting long–range Z–order. For large h/J the
unique ground state is the symmetric paramagnet. On a one–dimensional chain the
model is exactly solvable (via Jordan–Wigner fermionization), and at zero temper-
ature there is a quantum phase transition in the thermodynamic limit (n ≃ ∋) at
h = J where the energy gap between the lowest and second lowest eigenvalues of H
go to zero. While we will not derive this here, a two–site analysis already captures
the competition of the two terms.

Example 15 (Two–site TFIM). On two qubits,

H2(J, h) = ↔ J Z1Z2 ↔ h (X1 + X2).

Diagonalizing (for instance in the joint eigenbasis of the parity X1X2) yields four
eigenvalues

E ↑
{

↔


J2 + 4h2, ↔J, +J, +


J2 + 4h2
}

.

For J → 0 the ground energy is E0 = ↔
▽

J2 + 4h2, and the gap to the first excited
level is

!(J, h) =


J2 + 4h2 ↔ J.

We recover the limits discussed above: !(0, h) = 2h and !(J, 0) = 0 (reflecting
the two–fold degeneracy at h = 0). Already at two sites we see how the transverse
field h lifts the classical degeneracy and stabilizes a unique paramagnet, while the
interaction J favors ferromagnetic order.

On longer chains, the low–energy excitations can be understood in terms of
order and disorder. In the h = 0 limit, excitations are domain walls that can move
freely; turning on a small h allows them to hop and to be created or annihilated in
pairs. In the opposite J = 0 limit, the excitations are independent spin flips. The
Z2 symmetry generated by P forbids a nonzero ∞Zi∈ expectation value in any exact
eigenstate on a finite chain; nevertheless, in the ferromagnetic phase (h/J ∀ 1)
the ground space is nearly two–fold degenerate and exhibits robust long–range
correlations ∞ZiZj∈ ∃ 1 for distant i, j.


