
CHAPTER 1

A Sneak Peek: Learning a Rotation Matrix

Before we dive into the formalism of quantum learning, let us begin with a
simple motivating example. You will not need to know any quantum mechanics
to understand the setup, but it mirrors, in a stripped–down way, how many real
experiments try to learn an unknown quantum process that one can interact with
in the lab.

1. Basic Setup

Suppose there is an unknown two-dimensional rotation matrix

U = R(ω) ↭
(

cos(ω) sin(ω)
→ sin(ω) cos(ω) ,

)

and for simplicity assume that 0 ↑ ω < ε/2. Your goal is to figure out what ω is,
to within small error.

You can “perform an experiment” on it via the following model. Starting

from the first standard basis vector v =

[
1
0

]
, you can decide in advance upon any

collection of “controls” specified by rotation matrices O0 = R(ω0), . . . , Om = R(ωm),
and apply (i.e., left-multiply by) the transformation

OmUOm→1UOm→2 · · · UO0 .

This results in some new unit vector w =

[
x
y

]
.

Our figure of merit will be statistical e!ciency, namely we want to learn ω
to within some acceptable level of error using as few experiments and “queries” to
U (e.g., the above experiment makes m queries to U) as possible.

If we could see the entries of w, then it’s not hard to learn U . In fact we don’t
even need the full flexibility of picking O1, . . . , Om: we can simply take m = 0 and
use no controls whatsoever, so that the above transformation is given by U itself
and w = Uv. In this case, if w = (x, y), we can simply read o! the angle of rotation
defining U from ω = arccos(x).

There is a crucial catch however: in physical experiments, we never get to
see the literal vector w resulting from an experiment. Without getting into the
quantum details yet, the reason is that w is a superposition between two di!erent
states, namely the first standard basis vector and the second standard basis vector.
What we can do is measure w, at which point we observe one state or the other,
but in a probabilistic fashion.
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Definition 1 (Born rule – baby version). Given unit vector w = (x, y), if we

measure it, we get as output either

[
1
0

]
with probability x2, or

[
0
1

]
with probability

y2. Note that as w is a unit vector, this is a valid probability distribution.

One might thus envision a natural workaround to not having access to the exact
entries (x, y) of w. Measuring e!ectively gives us access to biased coin flips: with
probability x2 we see heads and with probability y2 we see tails. By repeatedly
performing the experiment that results in w and measuring w each time, we can
estimate x2 and y2 simply by computing the fraction of heads and tails we observe.
How many repetitions do we need?

This can be computed with the Cherno” bound:

Fact 2 (Cherno! bound). Let X1, . . . , XN be independent Bernoulli random vari-
ables with expectation p. Then for any t > 0,

Pr
[∣∣∣

1

N

∑

i

Xi → p
∣∣∣ > t

]
↑ 2 exp

(
→ Nt2

2p(1 → p)

)

In our setting, p = x2, and X̂ = 1
N

∑
i Xi, so if we apply the above with t =

ϑx
↓

1 → x2 and N = 2 log(2/ϖ)/ϑ2, the right-hand side of the above bound is ϖ and
we conclude that with

O(log(2/ϖ)/ϑ2) (1)

coin tosses, we can produce an estimate 0 ↑ X̂ ↑ 1 such that |x2 → X̂| ↑ ϑx
↓

1 → x2

with probability at least 1 → ϖ. We can then output arccos(
√

X̂) and argue that
this is O(ϑ)-close to ω with some elementary calculus (the reader can safely skip
this on a first reading without losing any of the core intuition):

Proposition 3. Let 0 ↑ ϑ ↑ 1/2. Suppose 0 ↑ X, X ↑ ↑ 1 satisfy |X → X ↑| ↑
ϑ
√

X(1 → X). Then

| arccos(
↓

X) → arccos(
↓

X ↑)| ↑ ϑ .

Proof. As arccos(
↓

X) and
√

X(1 → X) are symmetric about X = 1/2, we may
assume without loss of generality that |X| ↑ 1/2.

If |X| ↔ ω2

ω2+4 , then X/2 ↑ X ↑ ↑ X + ϑ/2. If we define f(z) ↭ arccos(
↓

z),

then f ↑(z) = → 1

2
↓

z(1→z)
, so |f ↑(z)| ↑ 2|f ↑(X)| for all z between X and X ↑. By

integrating, we conclude that

| arccos(
↓

X) → arccos(
↓

X ↑)| ↑ 1√
X(1 → X)

· ϑ
√

X(1 → X) ↑ ϑ

as desired.
If |X| < ω2

ω2+4 ↑ ω2

4 , then arccos(
↓

X) ↔ ε/2→ϑ. If X ↑ ↑ X, then arccos(
↓

X) ↑
arccos(

↓
X

↑

) ↑ ε/2, so | arccos(
↓

X) → arccos(
↓

X ↑)| ↑ ϑ. If X ↑ ↔ X, then
|f ↑(z)| ↑ 2|f ↑(X)| for all z between X ↑ and X, so the claimed bound follows again
by integrating. ↫
The 1/ϑ2 scaling in Eq. (1) for the number of coin tosses is called the standard
quantum limit – often it is formulated in the reverse direction, namely using N
experiments (sometimes called “shots”), one can estimate the unknown parameter
ω to error ↗ 1/

↓
N .
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2. Beating the Standard Quantum Limit

Of course, we are not yet done. While it is an unavoidable fact of life that in the
classical world, estimating the bias of a coin to error ϑ requires ↗ 1/ϑ2 coin tosses
in general, in the quantum world we are not limited to simply reducing learning
rotations to learning the bias of a random coin. Indeed, the approach described
above is exceedingly naive: we set m = 0 and didn’t use any controls Oi whatsoever.

It turns out that by being clever about the choice of experiments, we can do
much better, in fact with only O(log 1/ϑ) experiments and O(1/ϑ) queries to U in
total across all experiments. The O(1/ϑ) scaling is called the Heisenberg limit:
this turns out to be a fundamental barrier that no experimental protocol, no matter
how clever, can beat.

The key idea is to “bootstrap.” Instead of estimating ω to high precision right
o! the bat, we are going to gradually refine our estimate. As a thought experi-
ment, imagine we start by getting a relatively crude approximation to ω by running
the protocol in the previous section for target precision which is just a small con-
stant, say, ϑcrude = 1/4. We can accomplish this with probability 1 → ϖ using only
O(log(1/ϖ)) experiments and queries to U , with no dependence yet on the final
target precision ϑ.

Given this estimate, if we further subtract ϑcrude from it, we get an angle ω(1)

which is an underestimate of ω by a margin of at most 2ϑcrude ↑ 1/2. To estimate
ω, it now su”ces to estimate the residual angle ω → ω(1). So in all subsequent
experiments, instead of querying U = R(ω), we can query

U (1) ↭ UR(ω(1))† = R(ω → ω(1)) .

Here is our main claim:

Lemma 4. Suppose ω → 2→k ↑ ω(k) ↑ ω and let U (k) ↭ R(ω → ω(k)). Let ϖk > 0.
Consider the following protocol:

• Repeat the following experiment C log 1/ϖk times:
– Apply U (k) a total of 2k times starting from the first standard basis

vector v.
– Measure the resulting vector and record the observation (heads or

tails)
• Let X̂ denote the fraction of heads seen across these experiments.
• Define

ω(k+1) = ω(k) + arccos(
√

X̂)/2k → 1/2k+2 .

For C a su!ciently large absolute constant, we have ω → 1/2k+1 ↑ ω(k+1) ↑ ω with
probability at least 1 → ϖk.

Proof sketch. Note that the rotation given by applying U (k) a total of 2k times
is R(2k(ω → ω(k))). By taking C su”ciently large, the argument in the previous

section implies that | arccos(
√

X̂) → 2k(ω → ω(k))| ↑ 1/4. Dividing by 2k on both
sides, we conclude that with probability at least 1 → ϖk,

ω → 1/2k+2 ↑ ω(k) + arccos(
√

X̂)/2k ↑ ω + 1/2k+2 .

Subtracting 1/2k+2 from all sides and recalling the definition of ω(k+1) above, we
conclude that ω(k+1) is an underestimate of ω by at most 1/2k+1 as claimed. ↫
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Continuing in this fashion up to k = k ↭ ↘log2 1/ϑ≃, we obtain an angle ω(k)

which underestimates ω by at most ϑ, with probability at least 1 →
∑

k ϖk. Suppose

in each round k, we take ϖk ↭ ϖ2k→k→1, so that
∑

k ϖk ↑ ϖ.
Furthermore, in any round k, we perform

2k · C log 1/ϖk = 2k · C log 1/ϖ + O(2k · C(k + 1 → k))

queries to U (k) which amounts to as many queries to U . So the total number of
queries made to U is

(1 + 2 + · · · + 2k)C log 1/ϖ +
k∑

k=0

O(2k(k + 1 → k)) = O(log(1/ϖ)/ϑ)

as desired.

3. Looking Ahead

3.1. Rotation Learning in the Wild

The rotation learning problem can be thought of as a toy stand–in for a physical
process that imprints a phase ω on a two–level system (a qubit, a pair of optical
modes, or a two–dimensional invariant subspace inside a larger device).

In precision sensing (gravitational–wave interferometers, atomic clocks, Ramsey
spectroscopy, and phase estimation in general), the central task is to learn a small ω
as e”ciently as possible. Real instruments like LIGO [AAA+13] do not literally
implement the protocol we analyze here; for example, they inject squeezed light to
reduce measurement noise rather than concatenating many coherent applications
of the same unknown operation. Squeezing is notably more robust to realistic
optical losses than schemes that try to amplify phase information solely by repeated
coherent evolution or fragile entangled probes. Still, at the level of information flow,
many metrology strategies can be idealized as:

(prepare a known state)
apply Uω, possibly with controls→→→→→→→→→→→→→→→→→→→→→⇐ (measure and update).

Our rotation–learning toy model captures precisely this prepare–evolve–measure
loop. It allowed us to isolate two ingredients that matter for sample complexity: (i)
how coherently we can accumulate phase information (e.g. by applying U multiple
times or by clever controls), and (ii) how we post-process this information phase
into a reliable estimate of the unknown quantum object. The formalism developed
in this book will vastly generalize this example and its strategy.

3.2. Extensions

Although we illustrated the bootstrap idea with a 2 ⇒ 2 rotation, in fact the
same idea can be extended to learn any 2⇒2 unitary matrix in O(1/ϑ) total queries.

In fact, one can even extend this beyond 2 dimensions. What is needed is
an appropriate generalization of the step where we estimated the bias of a coin
toss to constant error ϑcrude. The relevant ideas for doing this will be introduced
later on in this lecture when we discuss tomography. When we move from 2
dimensions to d dimensions however, the crucial change is that the number of queries
will now depend on d. The intuition is that a completely unknown unitary on a
d–dimensional space has d2 real parameters, so without additional assumptions,
one should not expect to learn all of these parameters until the number of queries
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scales with O(d2). Indeed, it was shown recently [HKOT23] that the optimal
query complexity for learning an arbitrary unitary matrix in d dimensions in the
above model is exactly d2/ϑ, up to constant factors. The argument we presented
above is really just a baby version of the argument in that work.

Unfortunately, in the settings we will be interested in, we will always think
of d as scaling exponentially in the number of “particles” in the system. To avoid
exponential scaling, we then need to posit additional structure and align the learning
task with that structure. For example, one standard and “physically reasonable”
choice of structure to assume is that the unknown unitary takes the form of U =
e→iH , where H is a local Hamiltonian on n qubits; we will define this in due time,
but for now the intuition to keep in mind is that this Hamiltonian is described by
a total number of free parameters that only scales polynomially in the number
of particles. Under such structural assumptions, one can then hope to develop
algorithms that scale much more e”ciently – we will cover these in a later unit in
this course.

As another preview for what is to come, note that one can consider other
models of interaction. In the query model we considered in this lecture, we allowed
arbitrary control, and our choice of experiments was adaptive over the di!erent
rounds of the learning protocol. One could further enhance this model by, for
instance, performing m entangled experiments in parallel, expanding the relevant
dimension from d to dm. While this doesn’t end up buying much for the unitary
learning problem, in many other quantum learning settings this can make a big
di!erence in the e”ciency with which one can learn. In the other direction, one can
also consider weaker models where, perhaps due to various practical constraints on
the experimental apparatus like hardware limitations or noise, we cannot perform
arbitrary control. The e!ect of such constraints on the ultimate e”ciency with
which we can learn quantum states is another central theme in these notes.

Stepping further back, the rotation–learning example isolates three ingredients
that will organize the rest of the book: the unknown object (a state, unitary, chan-
nel, or Hamiltonian), the access model (how we may prepare inputs, interleave
known controls, parallelize or reuse the device, and measure), and the loss metric
(in this case, the “parameter error” with which we estimate ω). Throughout the
course of these lectures, we will use these basic ingredients to develop the founda-
tions of a general theory of quantum learning.


