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Introduction

This lecture introduces the fundamentals of quantum sensing by focusing on a canonical problem:
the optimal measurement of a magnetic field. This will serve as a foundation for understanding
broader concepts in quantum learning.

Q: How can we optimally sense or learn a magnetic field?

Problem Setup

We model the magnetic field, B , as pointing in the Z direction, such that B = B2. The sensor is
a qubit whose spin rotates under the influence of this field. The dynamics of this qubit sensor are
described by the Hamiltonian:

H=B-Z

where Z is the Pauli-Z operator. For simplicity, we assume the field strength is bounded, |B| < 1.
To determine the optimal way to learn the magnetic field B, we must first define the general class
of protocols available to us.

Q: What is the ultimate family of protocols for learning the value of B?

A general sensing protocol consists of several steps:

1. Prepare an initial quantum state, typically involving a sensor qubit and a multi-qubit quantum
computer.

2. Apply a unitary operation Wi to the joint system.

3. Let the sensor evolve under the Hamiltonian for a time ¢;.

4. Repeat steps 2 and 3 for subsequent operations Ws, ..., W; and evolution times ts,...,t .
5. Perform a final quantum computation (QC) and measure to produce an estimate B.

This process is visualized in the quantum circuit below, drawn from right to left. The protocol
begins with an initial state (far right), alternates between unitary operations W; and free evolu-
tion, and concludes with a final computation (QC) and measurement (far left) to yield a classical
estimate B.



A — c—iBZt; | ... ] —iBZt [ — sensor
QC Wyp— Wi —
quantum
computer
- - -

The final state of the n + 1 qubits before the QC and measurement is given by:
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From the measurement outcome, we compute an estimate, B, that approximates the true value of
B. The total sensing time is the sum of all evolution periods: T = ijl t;. With this framework,
we can pose a more precise question.

Q: What is the minimum sensing time required to learn B such that the error |B — B| < & with
high probability?

Our roadmap to answer this question is:

1. Design an effective protocol that achieves a good scaling.

2. Prove a fundamental lower bound (LB) on the required time for any protocol.

1 Protocol Design: Standard Quantum Limit (SQL)

We begin with a simple protocol consisting of independent measurements:
1. Prepare the sensor qubit in the state |[4) = %(|0) +11)).

2. Let it evolve under H = BZ for a time ¢. The state becomes:

1
V2

9 = B ) = (= B0) + €P|1))

3. Measure the qubit in the Y-basis, composed of states |y+) = %(|O> +i|1)) and |y—) =
2(0) — ).

The probabilities of the measurement outcomes are:

Ply+) = I{y + |9 = 5(1 +sin(2B1))

Ply=) = lly — Wl = 51 - sin(2B1)

For simplicity, we fix the sensing time ¢ = 1/2, so the probability simplifies to P(y+) = %(H—sin(B)).

We repeat this process N times. The empirical probability, P(y+), is estimated by dividing the
number of y+ outcomes by N.



Analysis with Hoeffding’s Inequality

Hoeffding’s inequality for N i.i.d. random variables X; € [0, 1] states:
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This bounds the error in our probability estimate. To ensure |P(y+) — P(y+)| < & with failure

probability at most §, we need N = O (lo(ga(,l)éé)). Our estimate for B is found by inverting the

probability: B = arcsin(2P(y+) — 1). Using the Lipschitz continuity of arcsin(z) for  not close to
+1, an error ¢’ in the probability corresponds to a field error e = O(g’). To achieve a final error
|B — B| < e with probability at least 1 — d, the number of measurements must be:
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This result is the Standard Quantum Limit (SQL). Since each measurement uses sensing time
t, the total sensing time is T = N -t = O(1/&?) for a fixed success probability.

2 Protocol Design: Heisenberg Limit (HL)

To achieve a better sensing time of O(1/¢), we use an iterative, multi-stage approach analogous to
phase estimation.

Level 1: Run the SQL protocol to get a rough estimate. With precision 1 = 0.1 and confidence
1—4, we obtain B(1) where Pr[|BM) — B| < 0.1] > 1—4. The sensing time is 7} = C-log(1/6).

Level 2: Using this initial estimate, we amplify the phase to learn the next digit of B. We
effectively evolve the system under a new Hamiltonian H' = 10(B — B!))Z. This is achieved
by applying the forward evolution e ~*219) followed by a corrective inverse evolution iBH(101)

Running the SQL protocol on this task gives an estimate b for 10(B — E(l)). Our new

estimate for B is B@N =B ¢ i’% with error less than 0.01. The sensing time for this stage

is Ty = C - 10 - log(1/9).

Level k: This process is repeated. At level k, we run SQL to estimate 10*~1(B — Eg@;l)), with a
sensing time of T}, = C - 10F~1 - log(1/0).
After L = [log;(1/¢)] levels, the final estimate is B = B() + i’% + i{% + .... The final error is
bounded by |3 — B| < 107% ~ ¢, and the cumulative failure probability is bounded by L - §.
The total sensing time is the sum of the times from all levels:

L L-1
T=2 Te=C-log1/s)- 3 10" = 010" log(1/9)) = O <1g(§/5)>
k=1 k=0

This improved scaling is the Heisenberg Limit (HL).



3 Lower Bound

To establish a fundamental limit, we consider the task of distinguishing two nearby hypotheses:
B = +¢ versus B = —e. Any protocol that learns B with precision € must be able to distinguish
these two scenarios. The distinguishability of the measurement outcome distributions is limited
by the distance between the corresponding quantum states, |[1)1.) and [¢)_.). The total variation
distance (TVD) is bounded by the trace distance, which in turn is bounded by the Euclidean norm
of the state difference:

TVD(Pr(z|B = +e¢), Pr(z|B = —¢)) < 3!\1w+e><w+e\ — |-} (W-elllt < l[P4e) — [l

Using a hybrid argument (telescoping sum) and the fact that unitaries preserve norms, we can
bound this difference:
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where T = Zj t; is the total sensing time. For the measurement outcomes to be reliably distin-
guishable, the TVD must be a constant value bounded away from zero. This requires:

const <TVD <27 = T = Q(1/e).

This proves that any protocol, even with access to a quantum computer, must use a total sensing
time of at least Q(1/¢).

4 Conclusion

In summary:
(A) We constructed a protocol (phase estimation) with total sensing time 7' = O(1/¢).
(B) We proved that any protocol achieving e error requires a sensing time of "= (1 /e).

Together, these results establish that the minimum sensing time to measure a magnetic field B to
error ¢ is ©(1/¢). At this point, we can say that we have fully understood how to optimally sense
a magnetic field in an idealized setting. I hope this gives a flavor of how learning theory works.



