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1 Introduction

We have explored the capabilities of classical and quantum algorithms for learning about quantum
systems. Today, we address a complementary and equally fundamental question: what are the
limits of classical Al agents when interacting with quantum systems? and what advantage could
quantum Al agents have over classical Al agents. While quantum agents can leverage entanglement
and coherent quantum memory to learn properties such as Pauli observables efficiently (as we have
seen from PSET 2), we will establish today that classical agents face severe fundamental limitations.
We prove that learning to predict the outcome of a chosen Pauli observable requires an exponential
number of experiments for any classical learning algorithm. This result demonstrates a provable
exponential quantum advantage in learning from experiments.

2 Modeling Classical Learning Agents

To establish a rigorous lower bound on classical learning, we must first formalize what it means for
a classical agent to learn from quantum experiments.

2.1 Memory States and Measurement Strategies

A general classical learning agent operates through repeated cycles of interaction with a quantum
system that changes its internal memory state:

1. State: The agent maintains a classical memory state M.

2. Action: Based on M, the agent selects a measurement to perform on the quantum system
described by state p.

3. Outcome: The agent receives a classical measurement outcome .
4. Update: The agent updates its memory state based on the observed outcome.

Mathematically, the measurement strategy of an agent in state M is described by a Positive
Operator-Valued Measure (POVM) M = {F,},, where ) F, =1 and F, = 0 for all outcomes x.
The probability of observing outcome x when measuring state p is given by the Born rule:

p(z) = Tr(Fep). (1)

The outcome causes a memory state transition M — M’.



2.2 Reduction to Rank-1 POVMs

To simplify our analysis without loss of generality, we restrict attention to measurements with
rank-1 POVM elements.

Lemma 1 (Rank-1 Simplification). Any classical learning agent using general POVMs can be
simulated by an agent using only rank-1 POVMs without changing the distinguishing capability.

Proof. Consider a general POVM element F,. Since F is positive semidefinite, we can perform a
spectral decomposition:

F, = Za;pylwxyxwwy‘a where ay > 0. (2)
y

We define a refined measurement strategy with outcomes labeled by pairs (z,y). The corresponding
POVM elements are:

Fx,y = Qgy| Yoy Xyl (3)
This constitutes a valid rank-1 POVM. The original agent is simulated by measuring outcome
(z,y) and retaining only the x component. Thus, we can restrict our analysis to agents using
rank-1 POVM elements of the form {w; |9, )|}z, where w, > 0 and ), wy (¢a|the) = 1. O
2.3 The Learning Tree Framework

The graph describing the memory transition can be a complicated directed graph with many cycles.
However, a classical learning agent with a general graph can always be simulated by a classical
learning agent with a directed tree that only walks from the root to a leaf. This is because the new
classical learning agent can simply record the entire history of the memory state of the original
classical agent. he new classical agent will start at the root with depth 0. After N experiments,
the new classical agent will arrive at a leaf with depth N. We call it the learning tree.

Definition 1 (Learning Tree). A learning tree of depth N consists of:
e A root node r representing the initial state.
e Internal nodes u, each associated with a rank-1 POVM {wg(cu) |¢§;u))}x

e Edges u —; v representing the transition from node u to node v upon the observation of a
specific measurement outcome x.

e Leaves ¢ representing the final memory states after N experiments.

For an unknown quantum state p that the learning agent tries to learn, the probability of transi-
tioning from node v to child node v is given by the Born rule:

Pr(u =, v | p) = wl (W8] ) . (4)

The probability of reaching a specific leaf £ is the product of transition probabilities along the
unique path from the root:

Pr(l|p) = 11 Pr(u =2 v | p). ()

(u—zv)€Epath(r—2£)



3 The Distinguishing Task

To demonstrate the fundamental limitations of classical learning agents, we define a hypothesis
testing problem such that being able to solve this problem implies being able to predict any Pauli
observables. Hence, by proving a lower bound on the number of experiments required by the
classical learning agents for this hypothesis testing problem, we can obtain the same lower bound
for predicting Pauli observables.

3.1 World A and World B

We consider two scenarios (worlds) that the agent must distinguish:

e World A (Pure Noise): The quantum system is in the maximally mixed state:

I
PA = on” (6)

e World B (Signal): The quantum system is in a state biased along an unknown Pauli
operator P € {I, X,Y, Z}®*"\ {I} with random sign:

I+ oceP

s (7)

PB = PPo =

where o € {+1,—1} is chosen uniformly at random, and € € (0, 1] is a bias parameter.

3.2 Learning Objective

The agent’s goal is to distinguish World A from World B with high probability after performing N
experiments. Equivalently, given a learning tree of depth IV, we ask: how large must N be for the
probability distributions over leaves to differ significantly between the two worlds?

3.3 Reduction to Predicting Pauli Observables

It is easy to see that if a classical agent can predict the expectation value Tr(Pp) for any P, then
the classical agent can distinguish World A and B. Hence, the exponential lower bound for this
task implies that the same exponential lower bound for the task of predicting Pauli observables.

4 Proof of Exponential Lower Bound

We now prove that classical agents require exponentially many experiments to distinguish the two
worlds. This implies the following theorem via the reduction above.

Theorem 1 (Classical Hardness of Predicting Pauli’s). Any classical agent that can learn from N
experiments on p to predict the expectation values of all Pauli observables P € {I, X,Y, Z}*" to
€ error with constant success probability requires N = (2" /e?) measurements.



4.1 Total Variation Distance

The distinguishing capability of any agent is bounded by the total variation distance (TVD) between
the probability distributions over leaves induced by the two worlds. Let p4(¢) denote the probability
of reaching leaf ¢ in World A, and let pp p,(¢) denote the corresponding probability in World B
for a specific Pauli P and sign o. Since the Pauli operator P is unknown to the agent and the sign
o is random, we average over these choices. The relevant distance is:

A= Epxr [TVD (pA,Eae{H,—l}pB,P,aﬂ ) (8)

where

TVD(p,q Z Ip(¢) )

Note that we actually care only about
A" =TVD (pa, Ep2rEocii1,-1}PB,Po) < A. (10)

Proving an upper bound of A always imply the same upper bound for A’. However, the other
direction may not be true in general. Hence, it is stronger to establish an upper bound on A.

Proving an upper bound on A implies that after the classical agent finishes doing experiments,
if someone revealed the correct P to the classical agent, it would still be hard for the classical agent
to distinguish between World A and B. This means even when a significant amount of information
is revealed to the classical agent, as long as the classical agent has finished the experiments, then
the distinguishing task is hard to solve. In contrast, proving an upper bound on A’ does not imply
that if the correct P is revealed, then the distinguishing task remains hard. Being able to prove an
upper bound on A means that even predicting one adversarially chosen Pauli P is hard for classical
agents (not just hard for predicting all 4™ Pauli observables).

4.2 Computing Path Probabilities
We analyze the probability of reaching a leaf ¢ through a specific path from the root.

World A: In the maximally mixed state ps = 1/2", the probability is:

w®
pal)= ]I <w<“>| wiy= I S (11)

(u—)zv)epath(f) (u—zv)€Epath(f)

where the product is taken over all edges (u —, v) on the path from the root to leaf /.

World B: In the biased state pp p, = (I + ceP)/2", we have:

I P
ppe@= ] wl @ =2 ) (12)
(u—>xv)6path(€)
(u)
= II S (rocwlipit) (13)

(u—gv)Epath(l)

=pa) ]I (A +0ePlua), (14)

(u—gv)Epath(f)

where we define the expectation value (P), , = <1[}g(6u)| P |¢§cu)>.



4.3 Bounding the Distinguishing Advantage

Averaging over the random sign o € {+1, —1}, we obtain:

EolpB,po(l)] = pa(l) - Eq { [T (+oeP)un) (15)
(u— g v)Epath(f)
=pa(l) - Qp(Y), (16)
where we define
Qpr(l) =Epefy1,-1) II  (+oePluy). (17)

(u—gv)€path(£)

Let 0y 2 = €(P)yz. Note that [0, ] < e <1 since [(P), | <1 for any normalized Pauli operator.
We can expand:

pr);{ [I a+an+ I (1@,@]. (18)
(

u—5v)Epath(¥) (u—gv)€Epath()
4.4 Application of AM-GM Inequality

We apply the arithmetic mean-geometric mean (AM-GM) inequality, which states that aTer > Vab
for non-negative a, b:

QP(E) > H (1 + 5u,ac) H (1 - 5u,ac) (19)
(u— g v)Epath(f) (u—zv)€Epath(¥)
= I[I «a-a. (20)
(u—zv)€Epath(¥)

Using the inequality [J_,(1 —a;) > 1 — 3N a; for a; € [0,1), we obtain:

Qp(l) > \/1— Y a2, (21)
(

u—5v)Epath(f)

For y € [0,1], we have 1 — /T —y < y. Therefore:

[1-Qp()|=1-Qp(¢) (22)
<1- [1— > 62, (23)
(u—gv)Epath(f)
< >, (24)
(u—gv)Epath(¥)
= Y éPn. (25)
(u—gv)Epath(€)



4.5 Computing the Expected Distance

The total variation distance for a fixed Pauli P is:

Ap =TVD(pa,Espp po) (26)
1
=3 Z [pA(0) = pA(O)QP(0)] (27)
prA ) [1—Qp(0)] (28)
S SN DR (29)
L (u—zv)€Epath(f)
Averaging over all non-identity Paulis:
A =Epy[Ap] (30)
2
€
SGEnO T EpaliPL (31)
(u—zv)€Epath()
€
=5 Z - [path(¢)| - Epzr [(P)?], (32)
‘

where |path(¢)| denotes the length (depth) of the path to ¢, and we use the fact that all measurement
vectors have the same expected squared overlap with a random Pauli.
4.6 Expected Squared Overlap with Random Pauli

We bound the expectation Ep_7[(P)?] for any normalized pure state [1)). The set of all n-qubit
Pauli operators {Py = I, Py,..., Pyn_1} forms an orthogonal basis for operators on n qubits. For
any pure state [1), we have the completeness relation:

4" —1

D 1@ Py = 2" Ta(j )y f?) = 2™ (33)

Jj=0

Separating the identity contribution:

()P + Y 1] P le)* = 2" (34)

PAT

Since (Y|I|¢) = (¢ |¢) = 1, we obtain:

S @l P2 =2 - 1. (35)

P#I
Therefore: . o] 1 on _ 1 1 - 1 36
par W1 PWF] = 57 = e pas Dy = 3791 S 3 (%)



4.7 Final Bound

Substituting this expectation into our bound:

< zanA - path(£)| (37)

= o ZpA - |path(¢)] . (38)

The sum ) ,pa(f) - |[path(¢)| equals the expected depth of the tree, which is at most N (the
maximum depth). Together, we have:
< Ne (39)
— on+1°

4.8 Conclusion of the Proof

For the agent to distinguish the two worlds with constant success probability, we require A = Q(1).

This necessitates: on
N—Q <€2> (40)

Because being able to predict Pauli observables to e error implies the ability to distinguish between
the two worlds, the lower bound applies to the Pauli prediction task. This completes the proof of
Theorem You can now check the accompanying slides for physical experiments conducted on
Google’s quantum processor demonstrating quantum advantage in learning from experiments.
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