PSET 1 Due on Friday October 17, 2025 at 11:59 pm PT
Ph 220: Quantum Learning Theory, Fall 2025 (Hsin-Yuan Huang) Version: 1.0

This problem set consists of three questions. The first question will develop your understanding of quantum sensing and
learning further by studying an important class of time-dependent fields: oscillating fields. The course has been focused
on sensing time-independent field B(t) = B. The next two questions review basic quantum mechanics that we will use in
the later classes. The questions are meant to be challenging, so do not feel discouraged if you get stuck and are unable to
solve some of them. Try to think and discuss with others to solve them. If you find that you are running low on time to
finish all the problems, our recommendation is to try to aim for breadth rather than depth — e.g., it is better to complete
a few parts of each of the three questions, than to completely solve one of the three questions and skip the others. Below
we provide hints for the various problems in this assignment. While these may help you solve the problems more easily,
you are not required to follow the hints as long as the proofs you provide are correct.

(50 pTs.) QuUANTUM COMPUTING ENHANCED SENSING FOR OSCILLATING FIELDS

Motivation: Sensing oscillating signals is a fundamental task in many areas of science and technology, from searching
for dark matter to medical imaging. A key challenge is when the signal’s frequency is unknown, requiring a search
over a wide range of possibilities. In this problem, we will explore how quantum computers can provide a significant
speedup for this task. We will compare the conventional sensing approach, where a spin sensor (a quantum sensor)
is controlled by classical means, to a quantum computing enhanced approach, where the spin sensor is coherently
controlled by a quantum computer. This problem is inspired by the recent paper Quantum Computing Enhanced
Sensing by Allen et al. (arXiv:2501.07625).

Setup: We model the signal as a time-dependent magnetic field that couples to a single-spin sensor (model as a
single qubit) via the following time-dependent single-qubit Hamiltonian,

where Z is the Pauli-Z operator and B(t) is a real-valued function. We want to distinguish between two cases:

e Null Hypothesis: No signal is present, so B(t) = 0.

e Alternative Hypothesis: An oscillating signal is present, B(t) = B cos(wt + ¢), for a known field strength
B > 0, but an unknown frequency w and phase ¢ € [0,27). (in practice, B will also be unknown and there
are known techniques for handling them; for this problem we will focus on B being known)

We will analyze two different models for performing this sensing task:

e Classically-Controlled Sensor: We can prepare an arbitrary 1-qubit state |¢)), let it evolve under the Hamilto-
nian f(t)H(t) for a chosen duration, and then perform a measurement. The classical filter function f(t) € [0,1]
can be modulated in time to control the sensor's interaction with the field. f(¢) = 0 means the sensor is re-
moved from the field while f(¢) = 1 means the sensor is fully immersed in the field. This process can be
repeated, and later experiments can be chosen adaptively based on previous measurement outcomes. The total
sensing time 7 is the sum of all evolution periods.

e Quantum Computing (QC) Enhanced Sensor: The sensor qubit can be controlled by an n-qubit universal
quantum computer. We can apply arbitrary quantum gates to the sensor qubit and the n computing qubits,
interleaved with periods of quantum evolution under the Hamiltonian H(¢) on the sensor qubit. The output
state can be formally written as
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where t; >t; 1 >ty o > ... > t;. The total sensing time 7 is equal to t; — #;.

1.A. (5 pTS.) Prove that any protocol that can be implemented on a classically-controlled sensor can be implemented
on a QC enhanced sensor with the same total sensing time 7.
Hint: Take J to be an even number that approaches co. Use the fact that XZX = —Z. Let the time interval
(tig1 —t;) be (---)dt for a very small dt, where (---) depends on the classical filter function f.

1.B. (10 p7S.) As a warm-up, suppose both the frequency w and phase ¢ are known. Design a classically-controlled
protocol that achieves a sensing time of 7 = O(1/B).



1.C.

(5 PTS.) What is the minimum sensing time 7 required to distinguish the null and alternative hypotheses with
a constant success probability? In quantum hypothesis testing between quantum states p and o, the maximal
probability of distinguishing between them is bounded by 3 + 5 - [[p — o||1, where ||p — o)1 is the trace norm
between p and o. Show that 7 = Q(1/B) is necessary for both sensor models and briefly explain why there is
no quantum computational advantage in this simple case by comparing the lower bound to Part 1.B..

For the next few parts, suppose the signal is periodic under a known period of 1, i.e., B(t) = B(t + 1),Vt. This is
equivalent to the frequency w being an integer multiple of 2. As we do not expect the oscillation to be infinitely fast,
we bound the largest frequency to be 27TV. Hence, w is an unknown frequency in the discrete set {27, 4, ..., 27W}.
The phase ¢ € [0, 27) remains fully unknown (except in Part 1.E.).

1.D.

1.E.

1.F.

(10 pTs.) For the classically-controlled sensor, design a protocol to determine if a signal is present. Show
that your protocol requires a sensing time of O(W/B). Explain how your protocol handles the lack of knowledge
regarding the unknown phase ¢ € [0, 27).

Hint: design a family of Harmonic filter functions f(¢) and concatenate them sequentially. One may find the
Bessel function useful: Jy(2) = 5 f027r cos(z cos())dd. It satisfies Jp(0) = 1 and —0.31 < Jy(7) < —0.30.

(10 pTs.) We now consider implementing a QC-enhanced sensor using Grover's search algorithm.

Recall Grover's unstructured search algorithm. Grover's algorithm addresses the unstructured search problem:
given an oracle function f : {0,1}" — {0,1} with a unique marked element z* such that only f(z*) =1,
the task is to identify z*. The algorithm begins with the uniform superposition |1y) = \/% > zefo13n ),
and iteratively implement Grover operator G = (2vo)(¢o| — I)(I — 2|z*)(z*|). Each application of G
rotates the state vector within the two-dimensional subspace spanned by |2*) and |1)g). A measurement in the
computational basis yields 2* with probability close to one after O(y/2") rotations.

Design a protocol that constructs a multi-qubit Grover's oracle over W elements and uses Grover's unstructured
search algorithm to achieve a total sensing time of O(v/W/B). For simplicity, you can assume ¢ = 0 for this
subproblem. When ¢ is unknown, one can use quantum signal processing to design a Grover's oracle.

Hint: Use the classical filter function in Part 1.D. and the reduction in Part 1.A. to design Grover's oracle.
Use the classical filter function in superposition instead of in sequence.

(10 pTs.) Here, we are to use Rudin—Shapiro sequence to design an improved classically-controlled sen-
sor. The Rudin-Shapiro sequence is a deterministic binary sequence {aj}jl\igl with a; € {%1}, such that
SUP,cr Zjvigl aje"| < Cv/M for a universal constant C. Design an improved protocol over the one in 1.D.

to achieve a total sensing time of O(vVW /B). Hint: Jy(z) is an even function.

One can prove that any QC-enhanced sensing protocol for this task requires Q(+/W/B) sensing time, which shows
that your protocol from Part 1.F. is asymptotically optimal. This shows that quantum computers offer no asymptotic
advantage when the signal is periodic and the frequency is discretized.

Now, we consider the more realistic scenario where the frequency w is an unknown real value in the continuous range
[1, W], and the phase ¢ € [0, 2) is also unknown.

1.G.

1.H.

1.1

(10,0PTIONAL PTS.) Design a classically-controlled sensor protocol to achieve O(W/B?) sensing time. For
simplicity, you can assume the limit of B — 0 for this subproblem.

Hint: You need to discretize into O(W/B) different frequency bins and test each frequency bin. Recall that
O(f) = fpoly(log f) hides any polynomial functions in the logarithm of f. Under the simplification of B — 0,
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will be ©(1) and cannot be consider to go to zero.

you can consider £,
w

to go to zero for all w,w’ € [1, W]. However, when |w — w'| = O(B), then ‘wiﬂ

(2.5,0PTIONAL PTS.) What is the optimal sensing time for a classically-controlled sensor and a QC-
enhanced sensor for this more realistic scenario when w is continuous?

Hint: Read Allen et al. to find the answer to this question. No need to prove your answer.
(2.5,0PTIONAL PTS.) Suppose W and B depend on a problem parameter N — oo: W(N) = N and

B(N) = N*". Find the condition on p such that the classical sensing time T¢ is the fourth power of the
QC-enhanced sensing time Tiy: Tc = 9(Té) (a quartic advantage), and the condition on p that only gives a

tiny sub-quadratic advantage: 7o = ©(T§").



(20 prs.) FuN WITH POST-MEASUREMENT STATES

Motivation: The ways in which quantum states evolve as one performs measurements on them are incredibly subtle.
In this exercise, we will explore some basic phenomena along these lines, with the ulterior motive of familiarizing
you with some common linear algebraic manipulations that arise from playing around with the Born rule and inner
products (fidelities) between states.

2.A. (5 PTs.) Let |¢) be an arbitrary n-qubit pure state, and let {M,1 — M} denote a two-outcome projective

measurement. Prove that the post-measurement state |1)') = (1 — M) |1} / (| (1 — M) [1)*/* upon observing
the outcome corresponding to 1 — M satisfies

[ (W) 17> 1 —e,

where ¢ is the probability of observing the outcome corresponding to M. Provide a short intuitive description
of what this inequality is saying.
2.B. (5 pTs.) Let IIy denote the single-qubit projector in the direction cos(6) |0) + sin(6) |1).

Let T € N, and define e = 7, suppose that we start with the state |0) and apply the following sequence of
measurements. First, we measure it with {II, 1 — II.}, then take the post-measurement state and measure it
with {IIy., 1—1II5.}, then take the post-measurement state and measure it with {II3., 1 —II3.}, etc., continuing
until we measure with {IIp., 1 — Iy }. Prove that the final post-measurement state is |1) with probability at
least 1—O(e). In a few sentences, briefly describe why this example is counterintuitive in light of Question 2.A..

2.C. (10 pTs.) Motivated by the previous example, we now prove a version of Question 2.A. where a sequence
of two-outcome measurements is performed. Let |¢)) be an arbitrary n-qubit pure state as before, and let
{My,1—M},...,{Ms, 1 — M} denote a sequence of two-outcome projective measurements. If |¢)’) denotes
the post-measurement state from performing these measurements in sequence and observing the outcomes
corresponding to 1 — My, ..., 1 — M, then prove that

S

@) P =1 (W M;[9)

i=1
Hints: Proceed via induction on the number of measurements. You may find Cauchy-Schwarz and triangle
inequality useful.

2.D. (5, OPTIONAL PTS.) Quantum Union Bound: Prove Question 2.C. in the more general setting where the
{M;,1 — M;}'s are arbitrary two-outcome POVMs (in this case, if a state |¢) is measured with this POVM,
the post-measurement state under observing 1 — M; is, up to scaling, given by /1 — M; |¢) rather than
(1 —M;)|9)).

(30 PTS.) METRIC ENTROPY OF CLASSICAL AND QUANTUM STATE SPACES

Motivation: Covering numbers quantify how large a space is at resolution £ and power many counting arguments
in quantum/classical information. In this problem you will develop bounds on epsilon-nets for the following spaces:
(i) pure states on n qubits and (ii) classical probability distributions on n bits.

Setup and notation: Let D = 2™. We write || - ||2 for the Euclidean/Frobenius norm and || - ||; for the vector ¢4
norm or trace norm as appropriate. For pure states 1, ¢ € CP with [|1)[|2 = ||¢[|2 = 1 define

doroj (0, 0) < min |4 — 0y, du(th,d) L] [0)N] — [}l |-

0e[0,2m)

For classical distributions p,q € Ap_; = {z € Rgo : Y ;x; = 1}, define total variation distance TV (p,q) =
1
§Hp —q1-

What is a covering number? Fix a metric space (X,d) and a tolerance € > 0. An e-net is any finite “catalog”
S C X such that every point of X lies within distance ¢ of some catalog item. The covering number

N(X,d,e) = min{|S|: S C X is an e-net}

is the smallest possible size of such a catalog.



What is CPP~1 and why global phase doesn’t matter? Two unit vectors 1, € CP that differ only by a global
phase, ¢ = ¢, represent the same physical pure state: for every POVM {M}} the probabilities pi, = (1| My|2)
equal (4| My|p) because |p)p| = |¢)1)|. Thus, the physically distinct pure states are rays (one-dimensional complex
subspaces) in CP, not individual vectors. The space of all rays is the complex projective space CPP~!: equivalently,
take the unit sphere $2P~1 ¢ CP = R?P and identify points that differ by a phase e?’. Choosing a phase convention
(e.g. “make the first nonzero coordinate real and > 0") just picks one representative from each ray.

Throughout you may assume 0 < ¢ < 1/4 and use universal constants ¢, C' > 0 that may change from line to line.

3.A.

3.B.

3.C.

3.D.

3.E.

(7 PTS.) Warm-up: covering the Euclidean ball. Let B™ = {z € R™ : ||z||2 < 1}. Prove that
(c/e)™ < N(B™|-ll;e) < (C/e)™

For the lower bound, compare the volume of B™ to the volume of the union of e-balls around points in an
e-net. For the upper bound, try constructing an e-net in a greedy fashion (i.e., maximize pairwise distance to
minimize cardinality) and again reason about volume ratios.

(3 PTs.) From ball to sphere. Let S~ ! = {x € R™ : ||z||2 = 1}. Prove that
(c/e)™ ™" < N(S™ LI [l2ie) < (C/e)™
Hints: For the upper bound, how would you take an e-net constructed for a unit ball and convert that into one

for a unit sphere? For the lower bound, how would you go in the reverse direction?

(5 PTS.) Metric equivalence for pure states. Show that for any unit vectors ¢, ¢ € C”,
dtr(wv(b) < dproj(waas) < \/idtr(w7¢)

Hint: Align the global phase to make (¢,¢) > 0, note that 1| [¥)X¥| — [#X¢| |1 = /1 —|(¥,¢)|* and
1% = 8l = /2 = 2(¢, 9).

(5 prs.) Covering number for n-qubit pure states. Let CP”~! denote the set of rays (global-phase
equivalence classes) of unit vectors in C”. Using Parts 3.B. and 3.C., prove

(c/e)?P~2 < N((C}P’Dfl,dtr,s) < (C/e)?P2,

Guidance: For the upper bound, start from an &’-net of S?P~! with ¢’ = ©(¢) and fix a phase convention
(e.g., first nonzero coordinate real and > 0) to pass to projective space, using Part 3.C.. For the lower bound,
construct a net of $2P~1 from a minimal net of CP?~! by adding in the phase.

(10 p1s.) Classical distributions on n bits (TV distance). Show that
(c/e)P™' < N(Ap_1,TV,e) < (C/e)P.

Upper bound hint: Quantize each coordinate to a grid of step @« = ©(¢/D) and adjust one coordinate to
preserve the sum 1; count feasible integer compositions via stars-and-bars to get (O(D/g)_ﬁDfl) < (C/e)PL.
Lower bound hint: Use a volume argument. Calculate integrals to obtain the volume of the intersection of a
TV distance ball of radius ¢ cut by the hyperplane H = {p e RP : 3. p; = 1}.



