Ph 220: Lecture 20

Next Steps for
Quantum x Al




Classical vs Quantum Al

® \What are the of quantum Al agents over classical Al?

® Could quantum technology fundamentally alter our ability to learn about the world?
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Exponential guantum advantage

Predicting many incompatible observables

To predict all Pauli observables {1, X, Y, Z}®",

classical agent needs (2(2") experiments,

quantum agent only needs (O(n) experiments.

Uncovering symmetry in dynamics

Classitying dynamics with or without time-reversal
symmetry gives

%R

To estimate property of principal component,
classical agent needs exponential time,
gquantum agent needs polynomial time.

Learning physical dynamics

To learn a polynomial-time quantum process,
a classical agent requires exponential experiments,
a quantum agent only needs polynomial experiments.



Demonstration on Sycamore:
Quantum advantage in learning states

Utilizing a total of 40 qubits
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Demonstration on Sycamore:
Quantum advantage in learning dynamics
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What we learned so far

¢* What physical phenomena can quantum machines learn?

Evolution time, , entanglement, , hoise

in state/measurement are quantumly hard to feel/see/measure/learn.

Mathematical tools: cryptography, purification, pseudorandom

states and unitaries, representation theory.
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% Al for Quantum Technology:

How to guantum technology with Al?

AlphaQubit tackles one of quantum
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Where do we go from here?

% Al for Quantum Technology:

How to guantum technology with Al?

»» Quantum Advantage for Classical Al:
Can quantum machines achieve in

learning problems arising from classical ML/AI?



Quantum Advantage
for Analyzing Classical Data
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Quantum Al

Question:

Can quantum Al offer useful
advantage in analyzing large
amount of ?

Existing QML algorithms
does not seem useful.



Quantum Advantage
for Analyzing Classical Data

Data loading problem
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for Analyzing Classical Data

] "mmmm

Data loading problem
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Quantum Advantage
for Analyzing Classical Data
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Quantum Advantage
for Analyzing Classical Data
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Quantum Advantage
for Analyzing Classical Data

Classical Question:
Data .
Samples Can QML running on

small quantum chips

exponentially larger

Tiny Massive classical machines?
User data, internet data, Quantum Al .
Classical Al

sensor data, financial data,
consumer data, market data, ...
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Quantum Advantage

for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...

Classical
Data
Samples

Tiny
Quantum Al

Massive
Classical Al

High-level algorithmic idea:

(1) Get data sample z ~ &

(2) Create Hamiltonian term /£,

(3) Evolve under ¢ 141

(4) Repeat

After seeing some samples,
the random unitary converges to

e Eal] for 3 tunable t.



Quantum Advantage
for Analyzing Classical Data

Classical
Data
Samples

Central Idea:

Replace QRAM with

a quantum oracle
sketched from
classical data samples.

. Tiny Massive
User data, internet data, Quantum Al .
: : Classical Al
sensor data, financial data,

consumer data, market data, ...



Quantum Advantage
for Analyzing Classical Data

Classical
Data
Samples

Claim:

With O(/N) samples,
poly(log N)-qubit machine
can solve SVM, PCA, ...

= .
'm v.s. than any classical

Tin Massi - . 0.99 o
User data, internet data, ooy assive machines with O(N"”7) bits.
Classical Al

sensor data, financial data,
consumer data, market data, ...
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Where do we go from here?

% Physics of Learning:
What are the fundamental limit in space, time, and

governing any physical system that can learn?

» Quantum Al Discovery:

How can quantum machines learn to ?
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Experiment

® Simplest task (from Lec. 1):

B() = Bvs B(t) = 0

® Sensing spin is affected by the
Hamiltonian H(7) = B(t) - Z

. time: ©(1/B)

Physical world

This optimality has spawn

the field of quantum sensing
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Sensing Classical Fields

® Simplest task (from Lec. 1):

B() = Bvs B(t) = 0

® Sensing spin is affected by the
Hamiltonian H(7) = B(t) - Z

. time: ©(1/B)

But no need for quantum Al &

Experiment

Physical world

the speedup is just quadratic.

Sensor

Quantum-enhanced

Quantum oo
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Sensing Classical Fields
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Discovering New Phases of Matter
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Discovering New Phases of Matter

Phase diagram

Symmetry
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Long-term ambitions

. Develop our understanding of learning to accelerate/automate science.

2. Build a capable of learning and discovering new facets
of our universe beyond humans and classical machines.

Al imagination of itself learning and discovering new facets of our quantum universe



