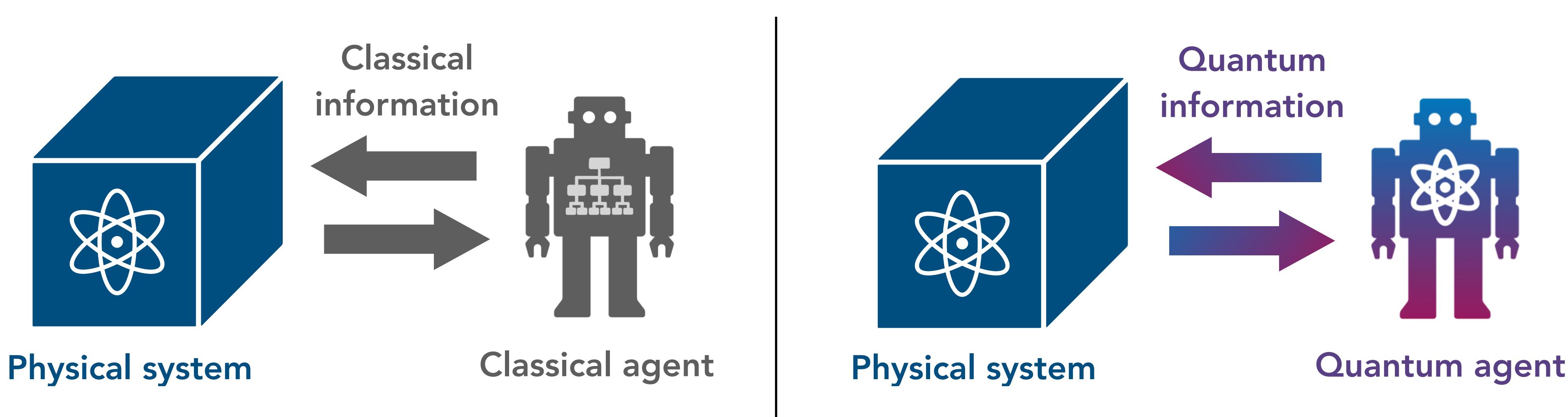


Ph 220: Lecture 20

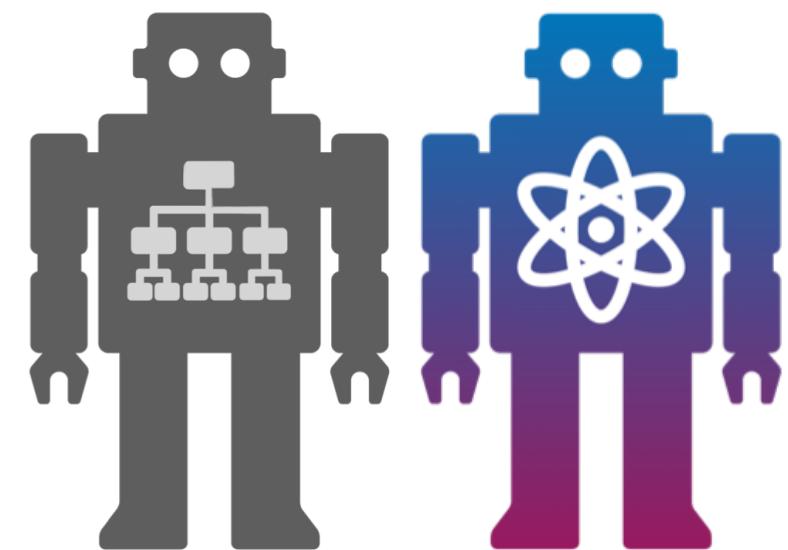
Next Steps for Quantum x AI

Classical vs Quantum AI

- What are the **advantages** of quantum AI agents over classical AI?
- Could quantum technology fundamentally alter our ability to **learn** about the world?



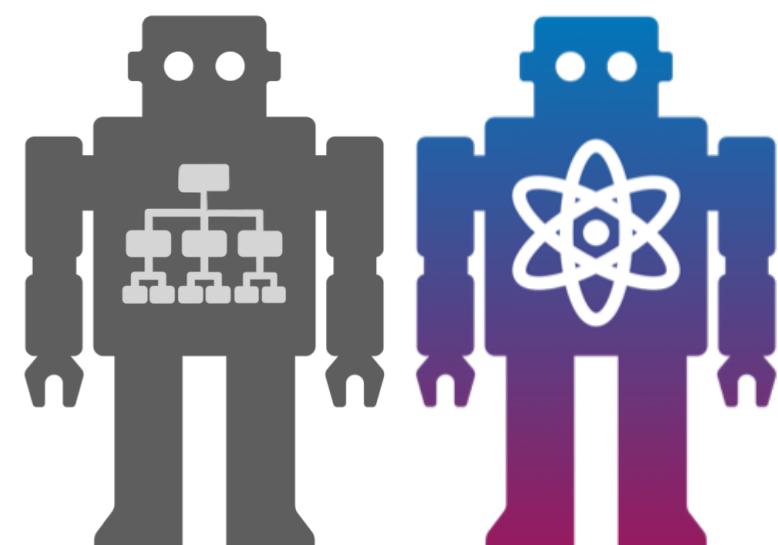
Exponential quantum advantage



Exponential quantum advantage

Predicting many incompatible observables

To predict all Pauli observables $\{I, X, Y, Z\}^{\otimes n}$,
classical agent needs $\Omega(2^n)$ experiments,
quantum agent only needs $\mathcal{O}(n)$ experiments.



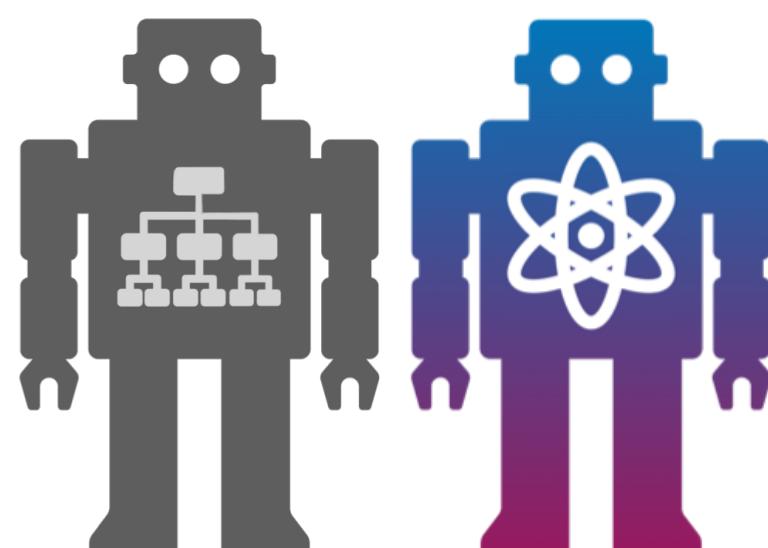
Exponential quantum advantage

Predicting many incompatible observables

To predict all Pauli observables $\{I, X, Y, Z\}^{\otimes n}$,
classical agent needs **$\Omega(2^n)$ experiments**,
quantum agent only needs **$\mathcal{O}(n)$ experiments**.

Performing quantum PCA

To estimate property of principal component,
classical agent needs **exponential time**,
quantum agent needs **polynomial time**.



Exponential quantum advantage

Predicting many incompatible observables

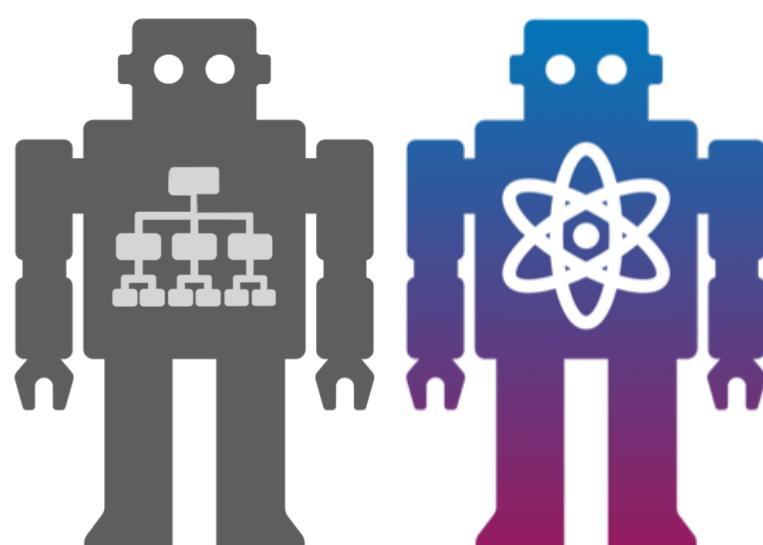
To predict all Pauli observables $\{I, X, Y, Z\}^{\otimes n}$,
classical agent needs **$\Omega(2^n)$ experiments**,
quantum agent only needs **$\mathcal{O}(n)$ experiments**.

Performing quantum PCA

To estimate property of principal component,
classical agent needs **exponential time**,
quantum agent needs **polynomial time**.

Uncovering symmetry in dynamics

Classifying dynamics with or without time-reversal
symmetry gives **exponential advantage**.



Exponential quantum advantage

Predicting many incompatible observables

To predict all Pauli observables $\{I, X, Y, Z\}^{\otimes n}$,
classical agent needs **$\Omega(2^n)$ experiments**,
quantum agent only needs **$\mathcal{O}(n)$ experiments**.

Performing quantum PCA

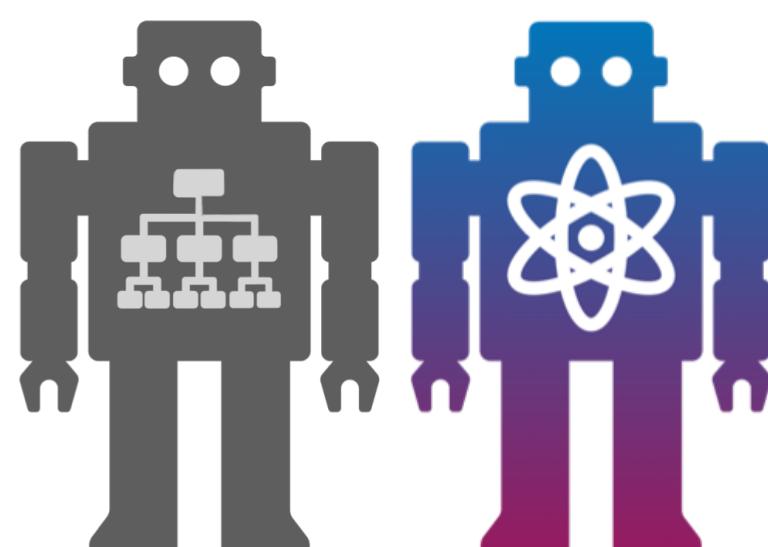
To estimate property of principal component,
classical agent needs **exponential time**,
quantum agent needs **polynomial time**.

Uncovering symmetry in dynamics

Classifying dynamics with or without time-reversal
symmetry gives **exponential advantage**.

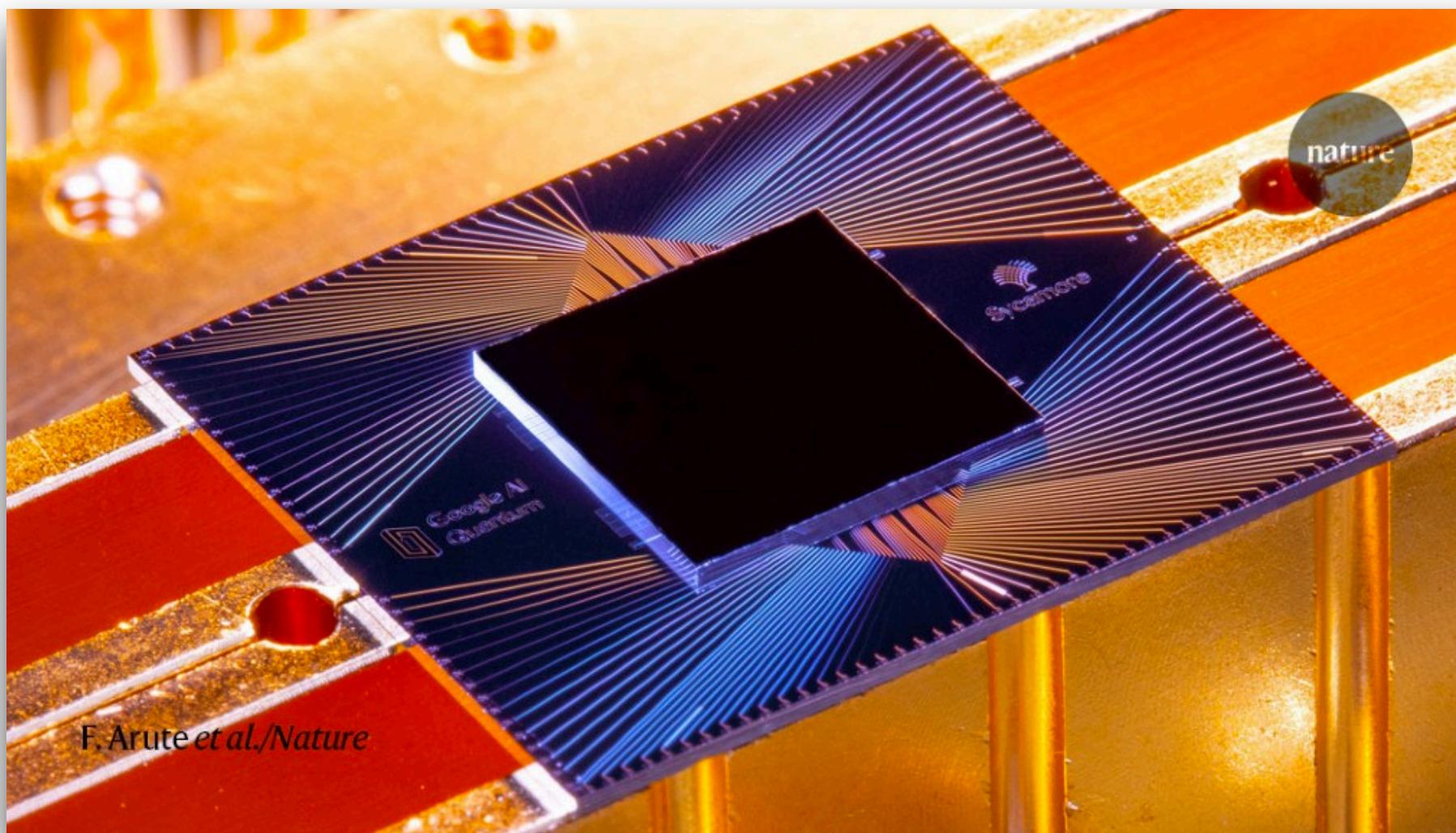
Learning physical dynamics

To learn a polynomial-time quantum process,
a classical agent requires **exponential experiments**,
a quantum agent only needs **polynomial experiments**.

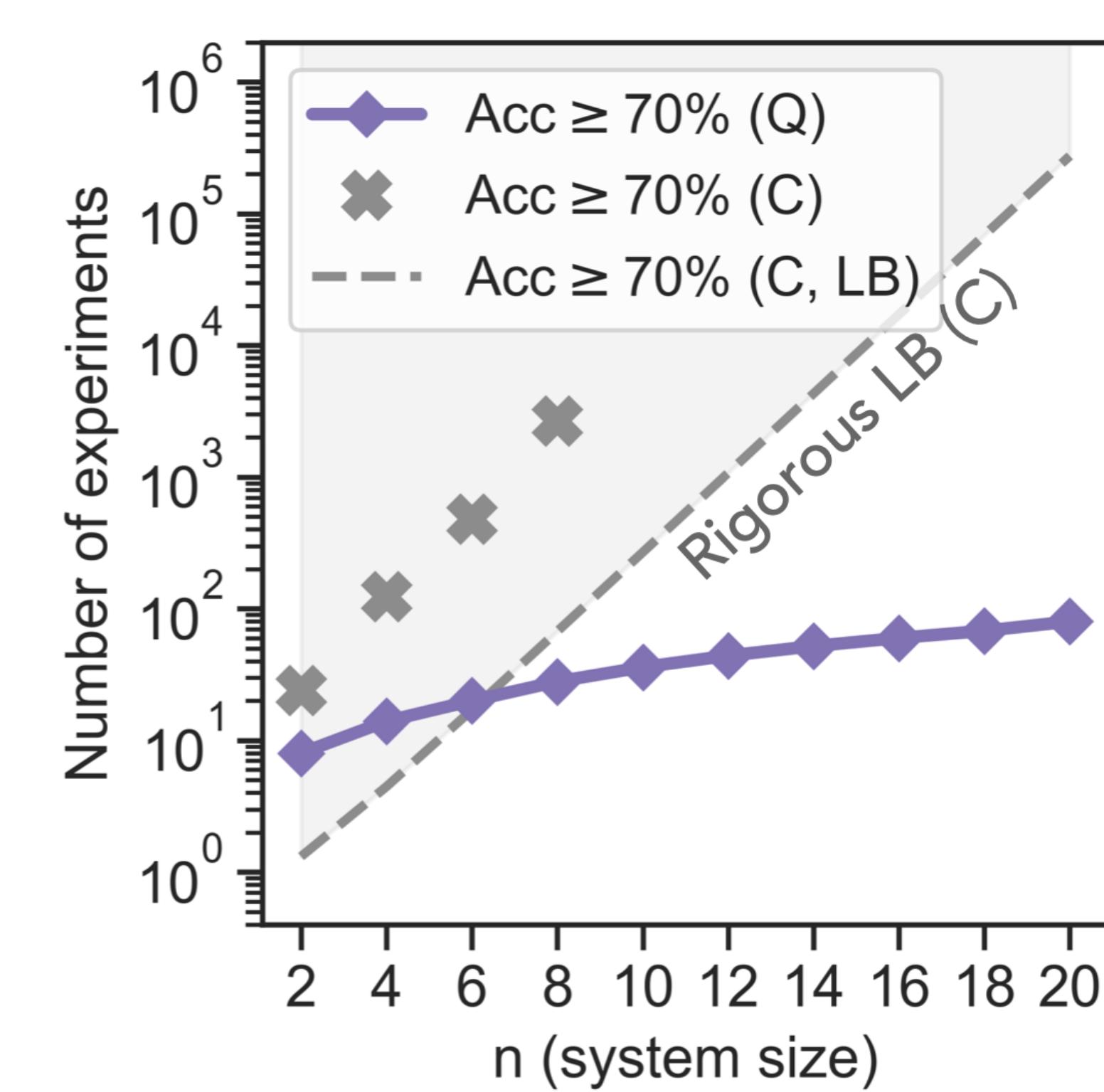


Demonstration on Sycamore: Quantum advantage in learning states

Utilizing a total of 40 qubits

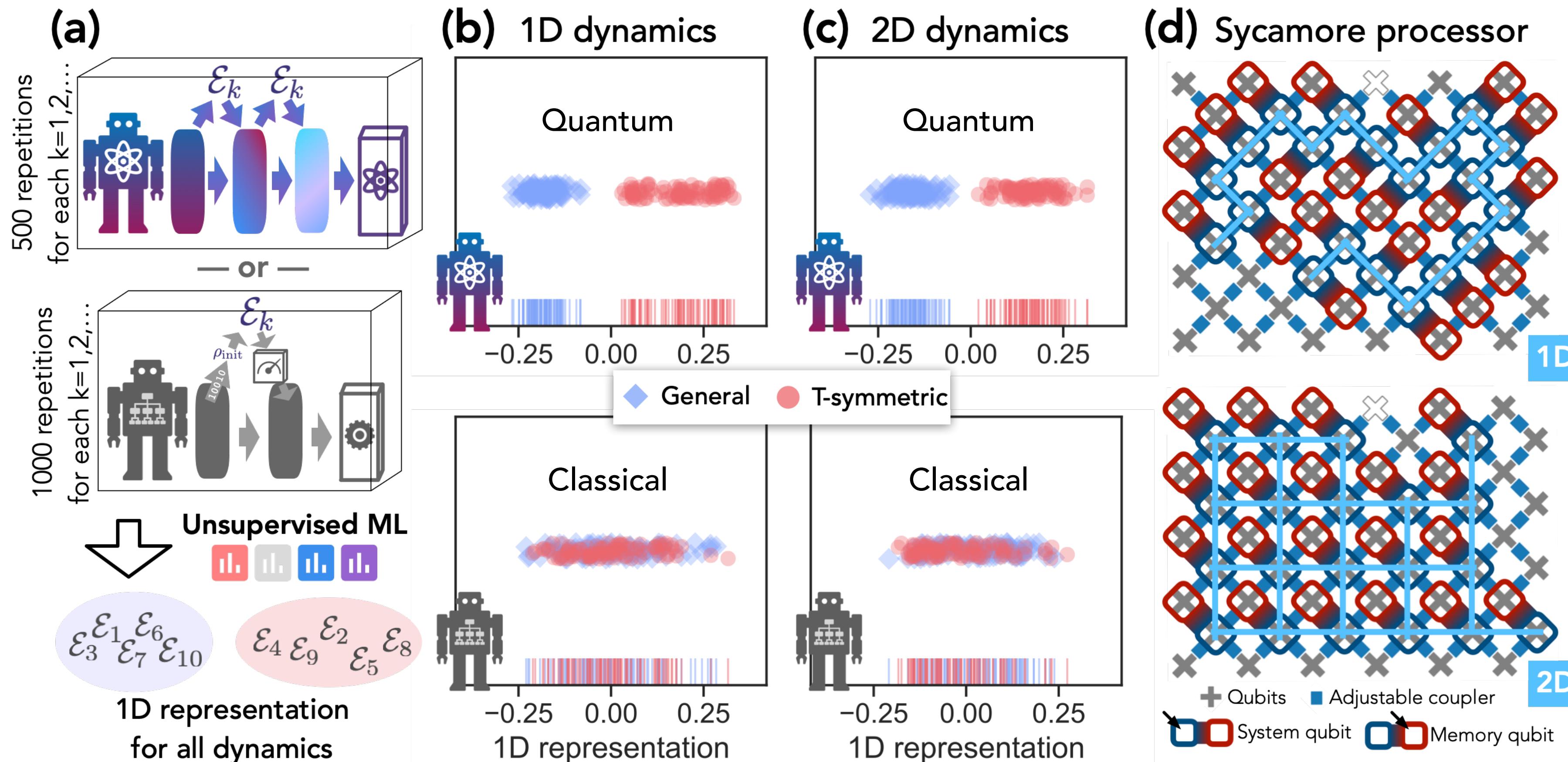


Sycamore Processor



Demonstration on Sycamore:

Quantum advantage in learning dynamics



What we learned so far

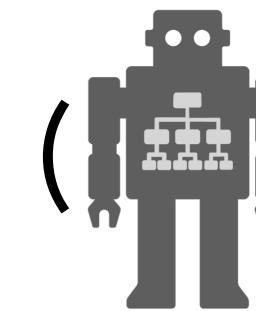
What we learned so far

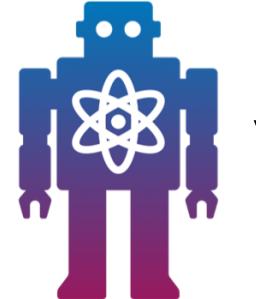
- ❖ How to efficiently learn in the quantum universe?

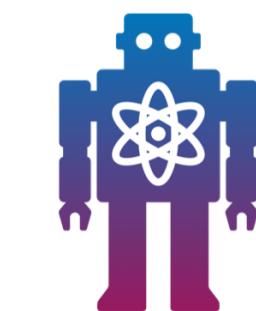
What we learned so far

❖ How to efficiently learn in the quantum universe?

We have seen how to learn **fields**, **states**, **unitaries**, **Hamiltonians**, **devices**



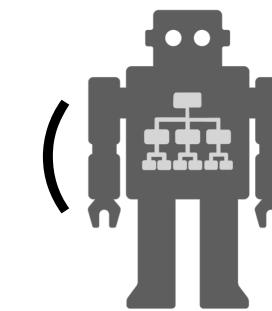
(via randomized measurement,  via gentle entangled measurement)

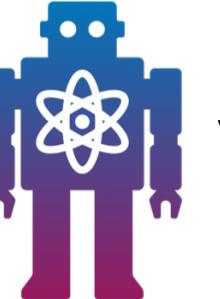


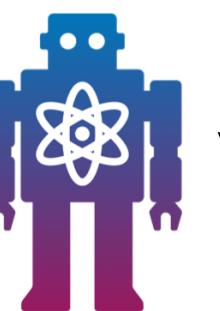
What we learned so far

❖ How to efficiently learn in the quantum universe?

We have seen how to learn **fields**, **states**, **unitaries**, **Hamiltonians**, **devices**



(via randomized measurement,  via gentle entangled measurement)



Mathematical tools: concentration inequality, Weingarten calculus,
gentle measurements, matrix analysis.

What we learned so far

- ❖ What physical phenomena can quantum machines learn?

What we learned so far

- ❖ What physical phenomena can quantum machines learn?

Evolution time, causal structure, entanglement, topological order, noise

in state/measurement are **quantumly hard** to feel/see/measure/learn.

What we learned so far

- ❖ What physical phenomena can quantum machines learn?

Evolution time, causal structure, entanglement, topological order, noise

in state/measurement are **quantumly hard** to feel/see/measure/learn.

Mathematical tools: cryptography, purification, pseudorandom states and unitaries, representation theory.

What we learned so far

- ❖ When can quantum machines learn/predict better than classical?

What we learned so far

- ❖ When can quantum machines learn/predict better than classical?

QNNs can learn to generate classically hard distributions.

Quantum AI can learn exponentially faster than classical AI in quantum tasks.

What we learned so far

❖ When can quantum machines learn/predict better than classical?

QNNs can learn to generate classically hard distributions.

Quantum AI can learn exponentially faster than classical AI in quantum tasks.

Mathematical tools: teleportation/MBQC, quantum complexity theory, learning tree, uncertainty principle.

Where do we go from here?

Where do we go from here?

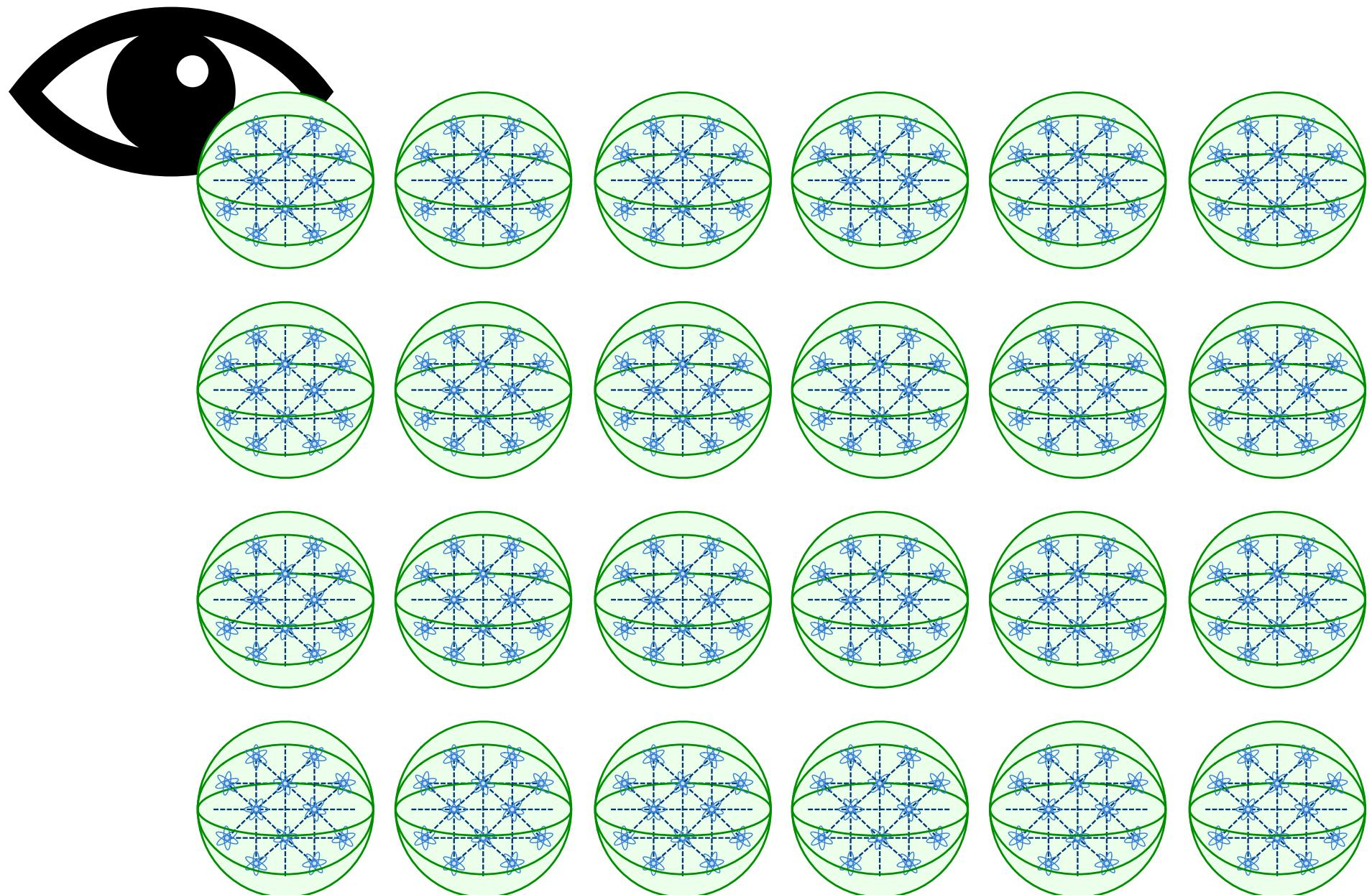
❖ AI for Quantum Technology:

How to **accelerate/automate** quantum technology with AI?

Where do we go from here?

❖ AI for Quantum Technology:

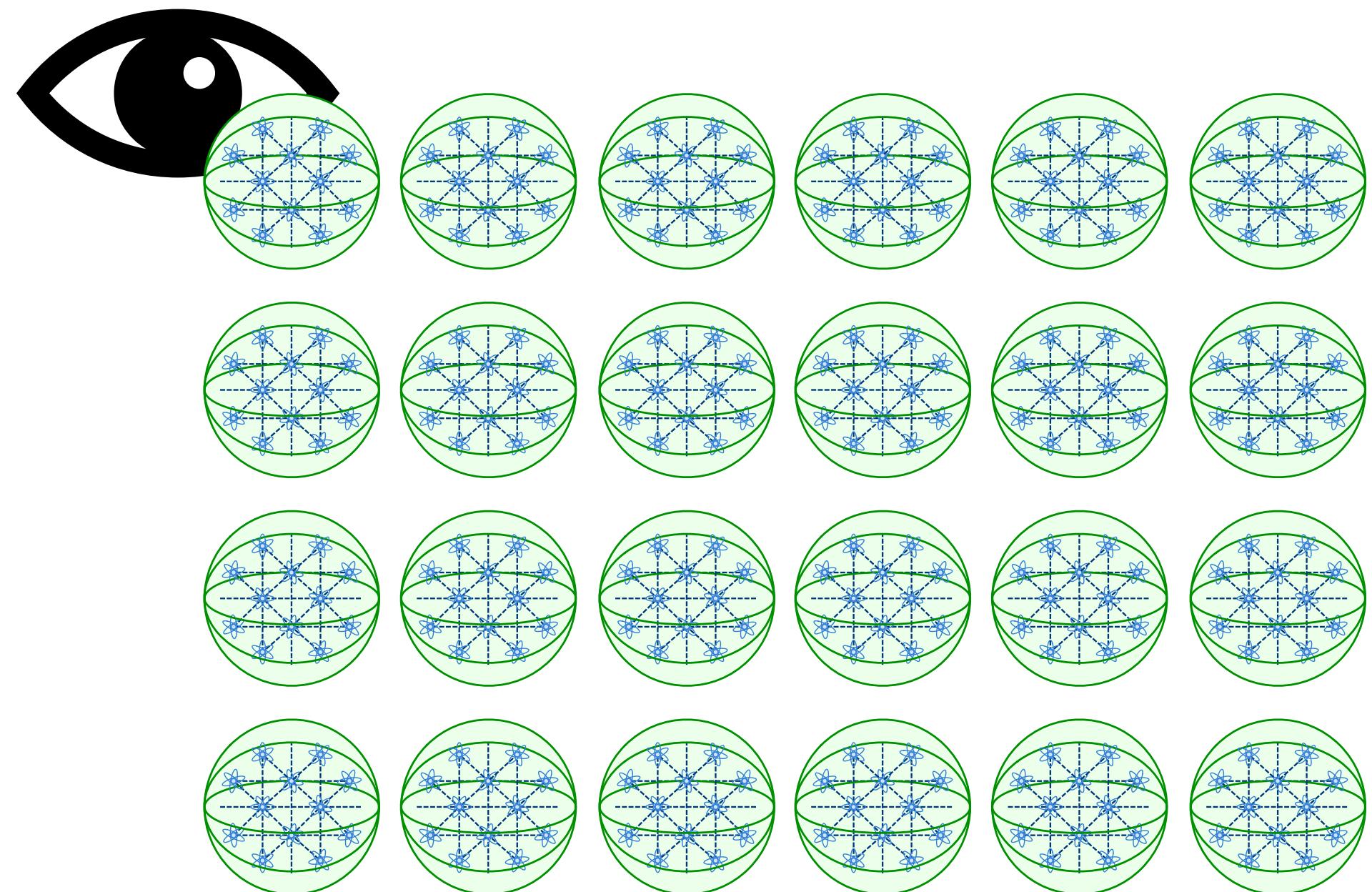
How to **accelerate/automate** quantum technology with AI?



Where do we go from here?

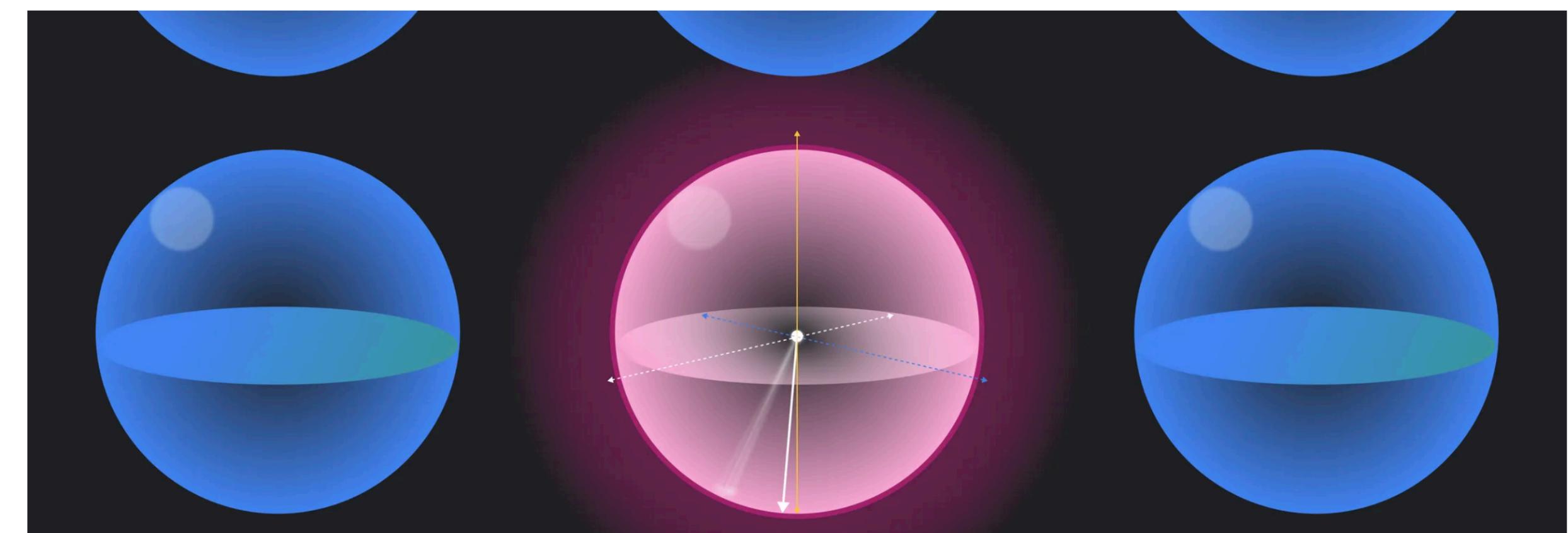
❖ AI for Quantum Technology:

How to **accelerate/automate** quantum technology with AI?



AlphaQubit tackles one of quantum computing's biggest challenges

Google DeepMind and Quantum AI teams



Where do we go from here?

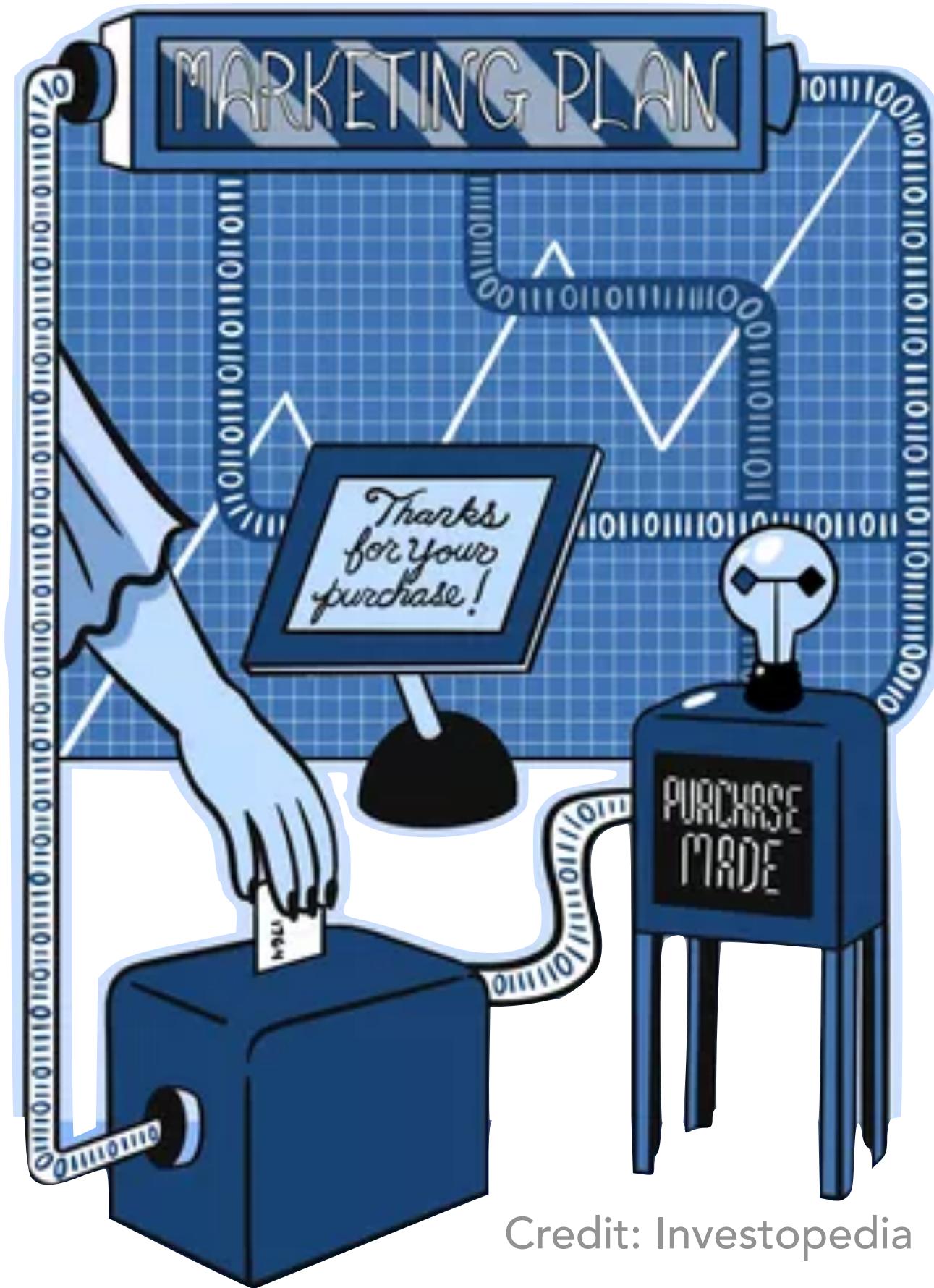
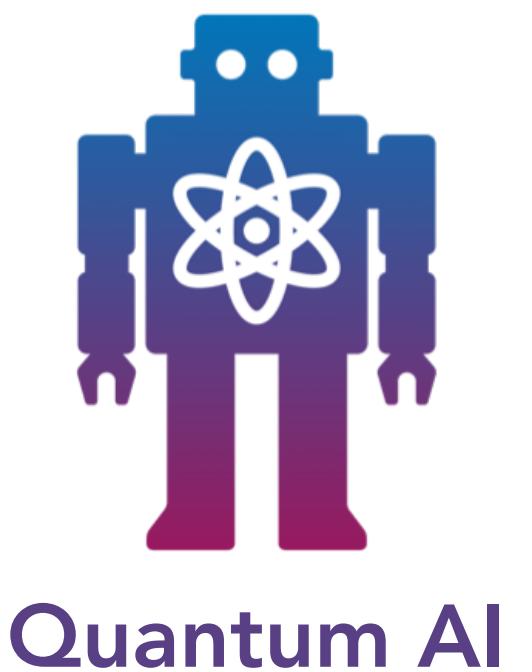
- ❖ **AI for Quantum Technology:**

How to **accelerate/automate** quantum technology with AI?

- ❖ **Quantum Advantage for Classical AI:**

Can quantum machines achieve **significant advantage** in learning problems arising from **classical ML/AI**?

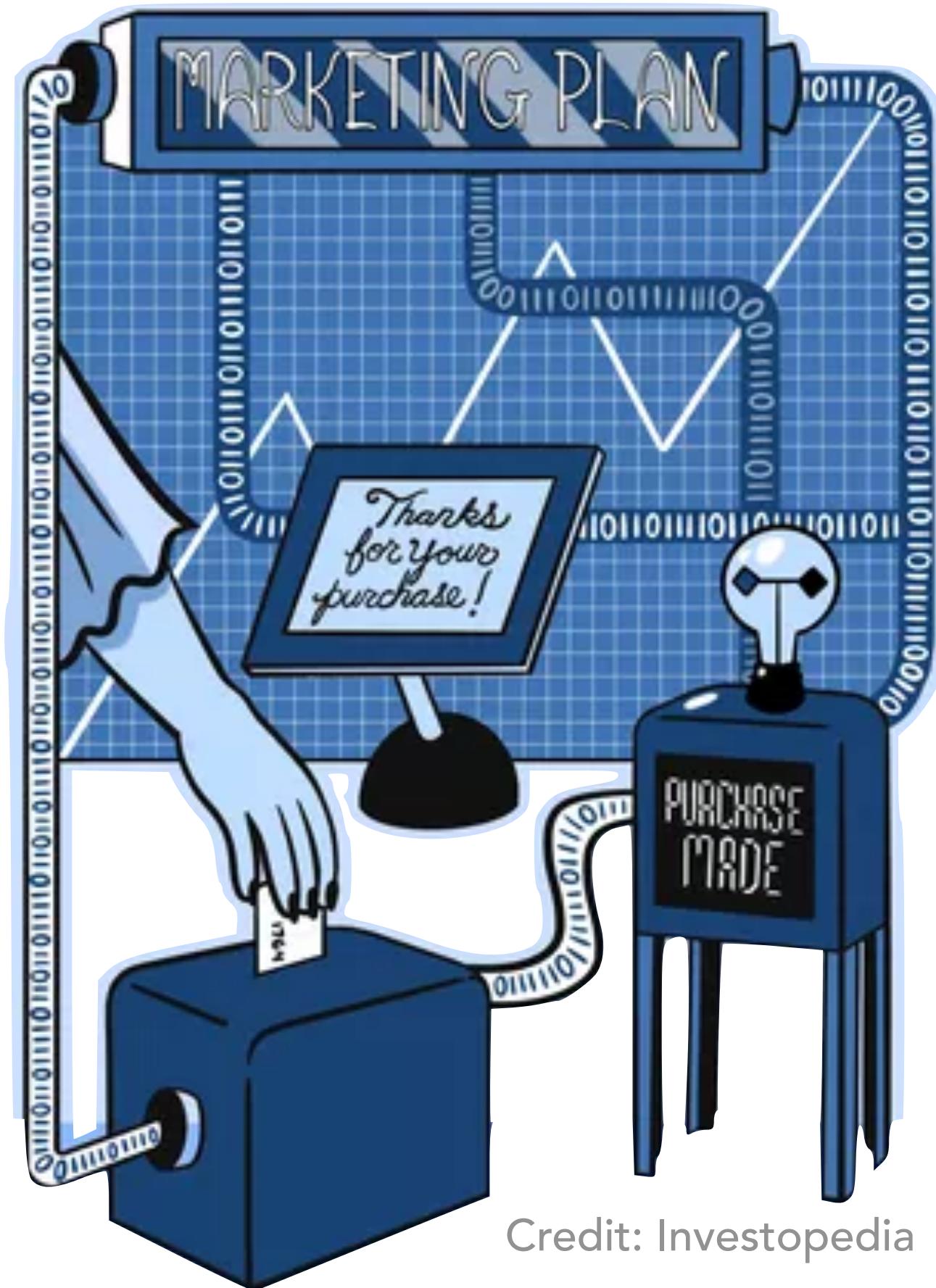
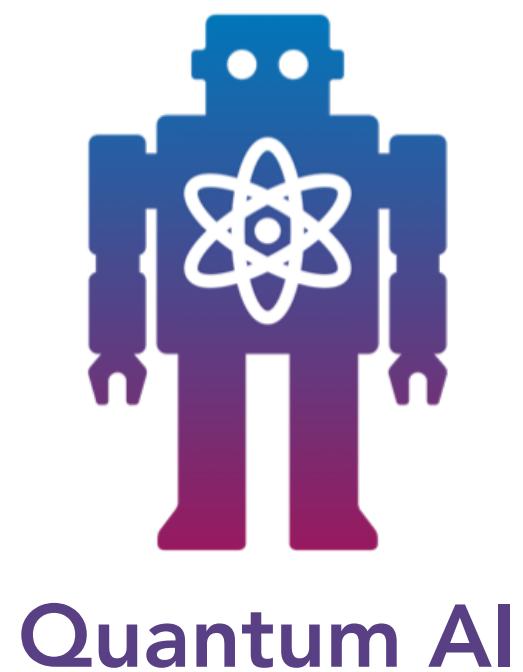
Quantum Advantage for Analyzing Classical Data



Question:

Can quantum AI offer useful advantage in analyzing large amount of **classical data**?

Quantum Advantage for Analyzing Classical Data

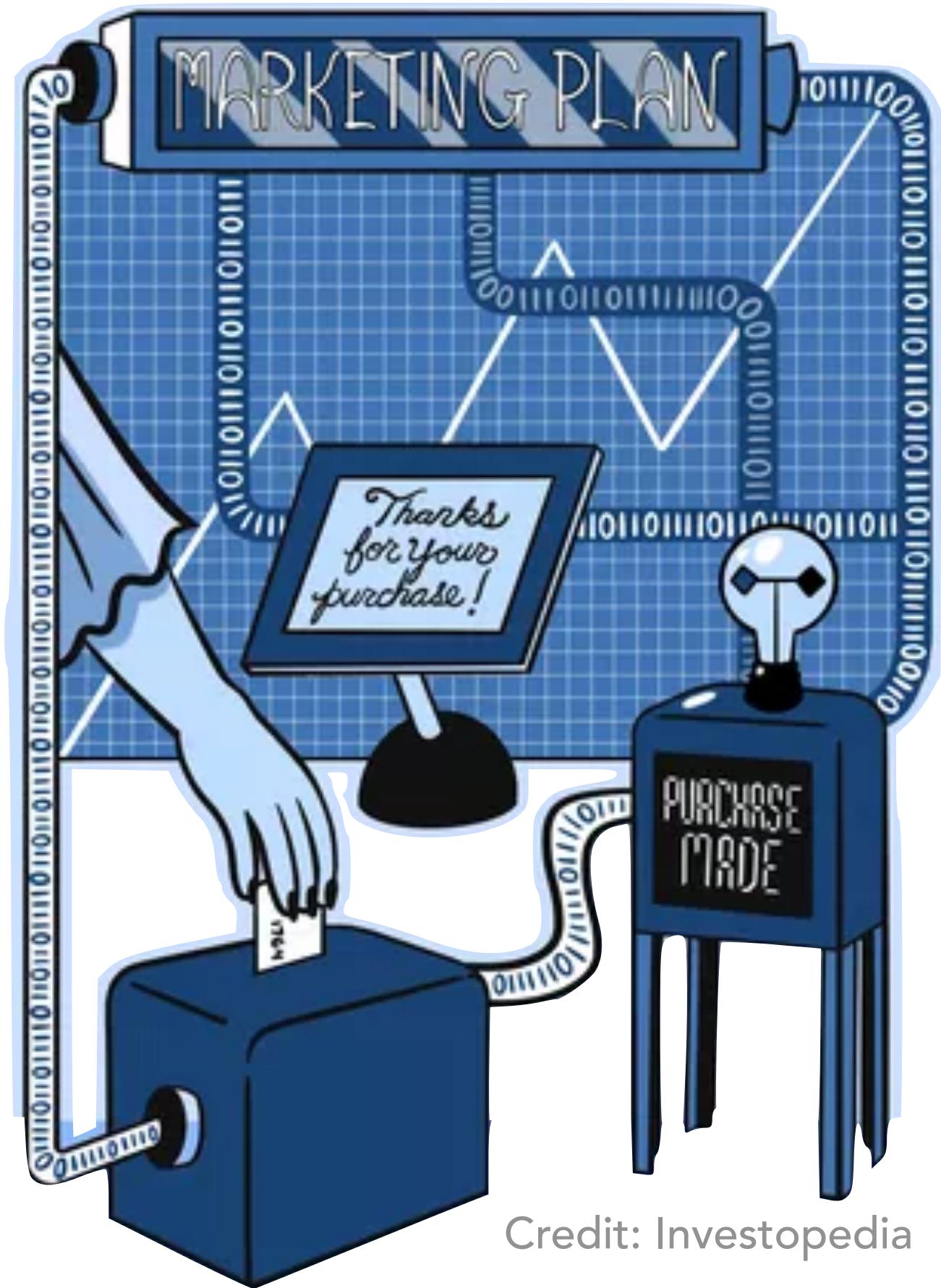
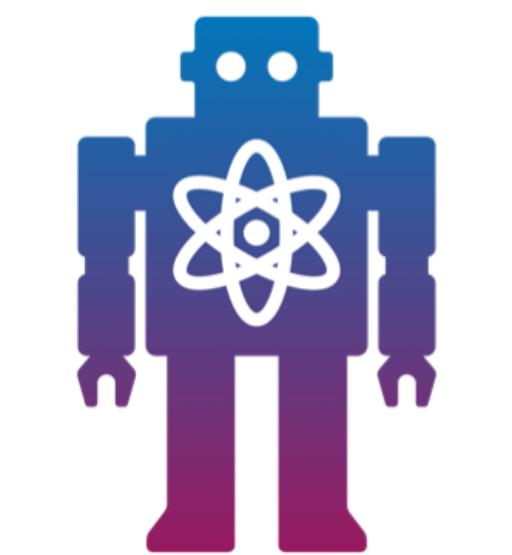


Question:

Can quantum AI offer useful advantage in analyzing large amount of **classical data**?

Existing QML algorithms does not seem useful.

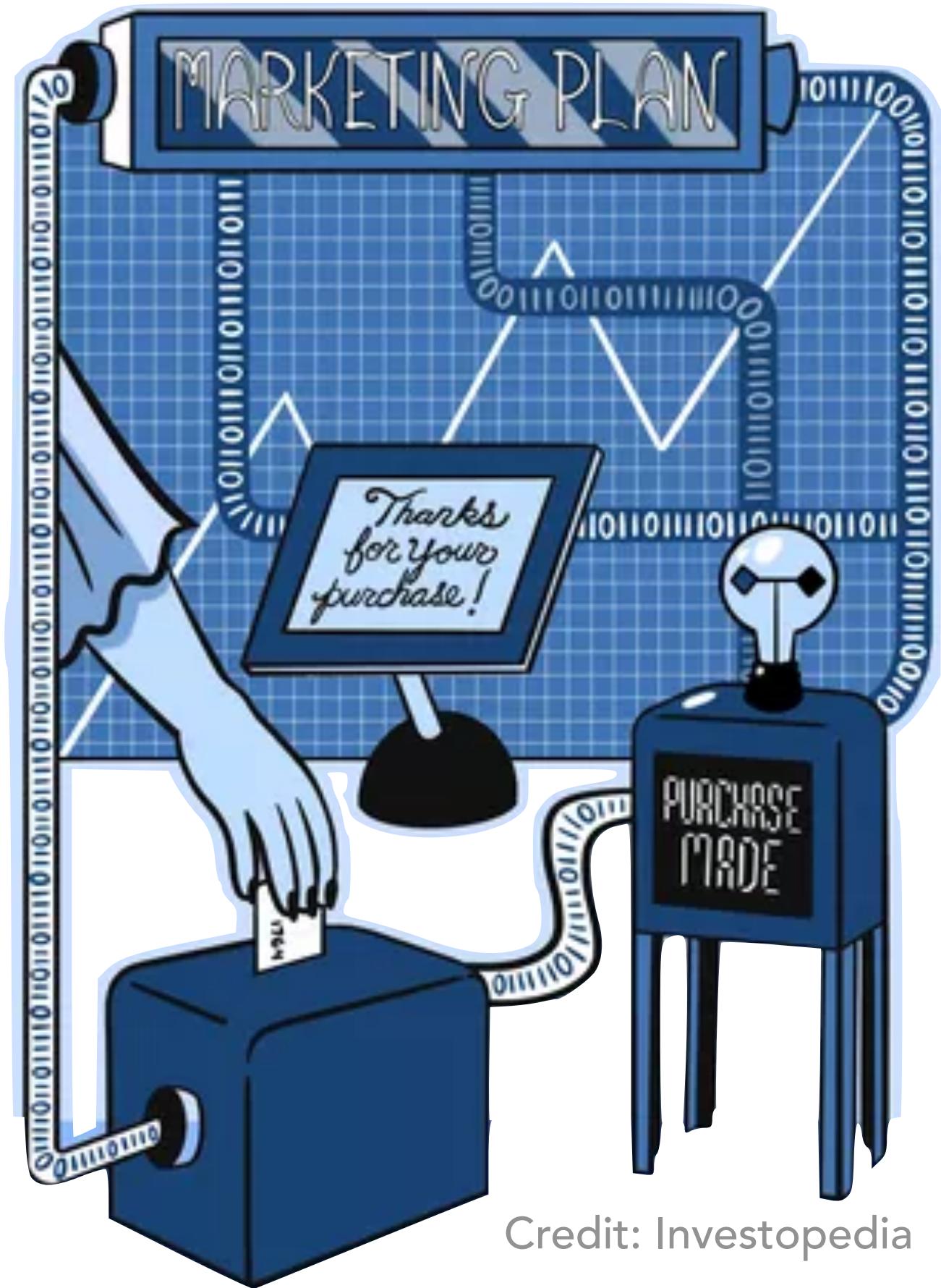
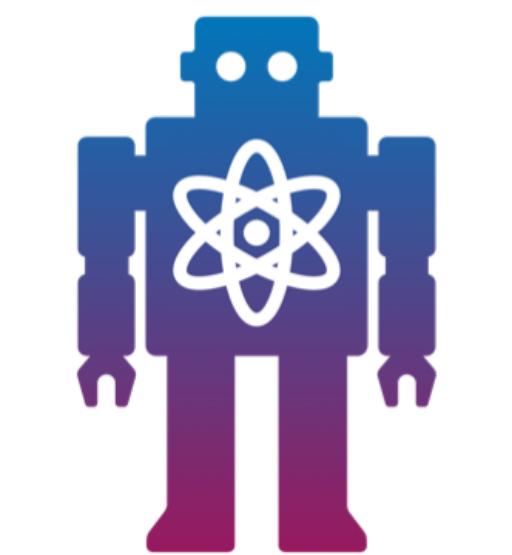
Quantum Advantage for Analyzing Classical Data



Quantum AI

Data loading problem
(data loading \gg computation)

Quantum Advantage for Analyzing Classical Data

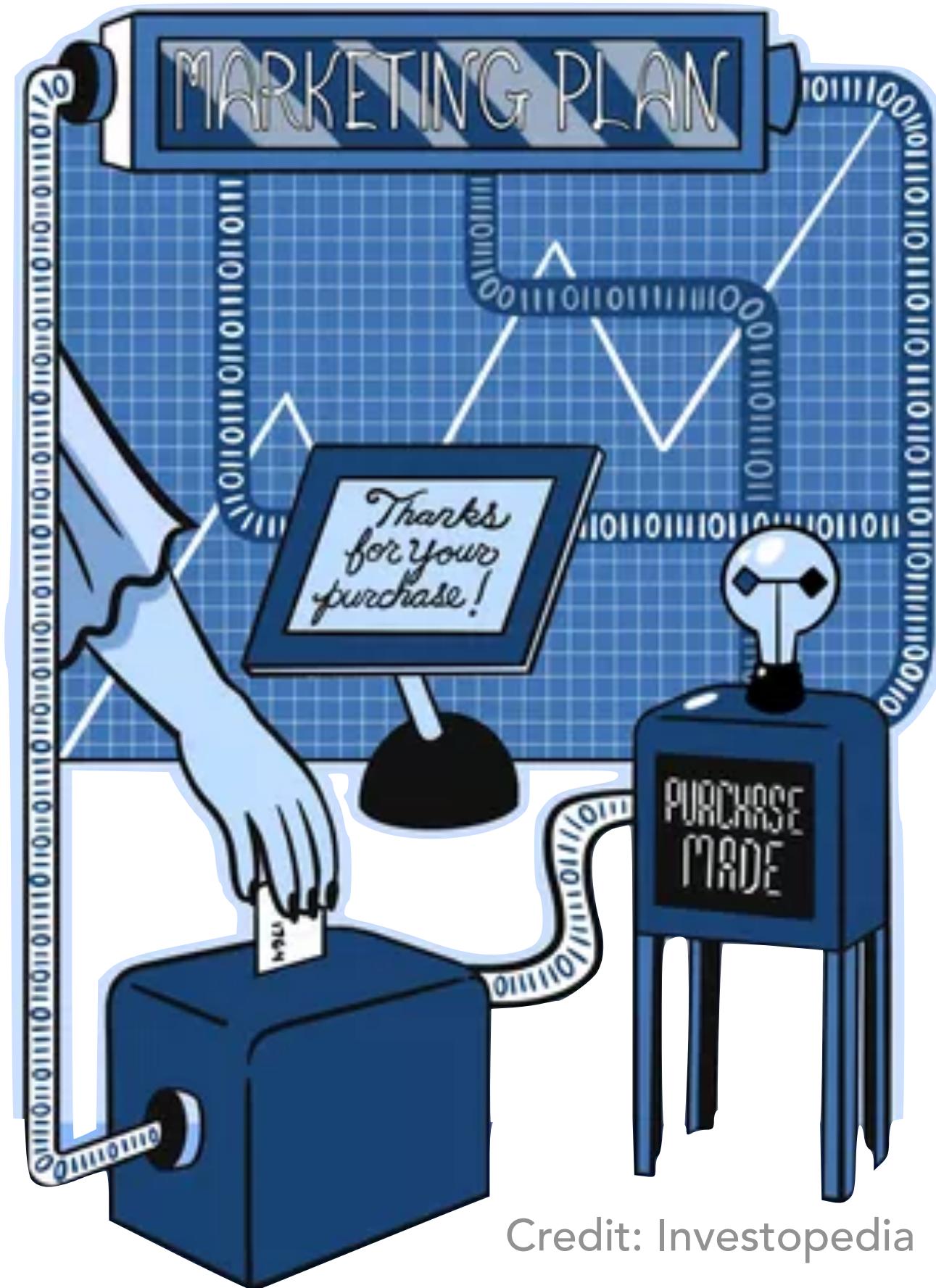
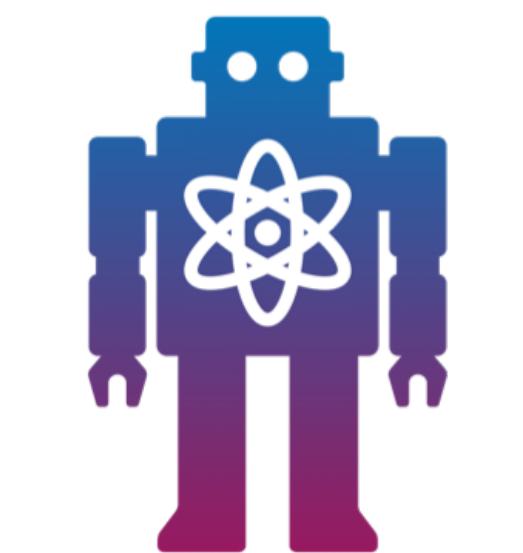


Quantum AI

Data loading problem
(data loading \gg computation)

Exponentially large QRAM

Quantum Advantage for Analyzing Classical Data



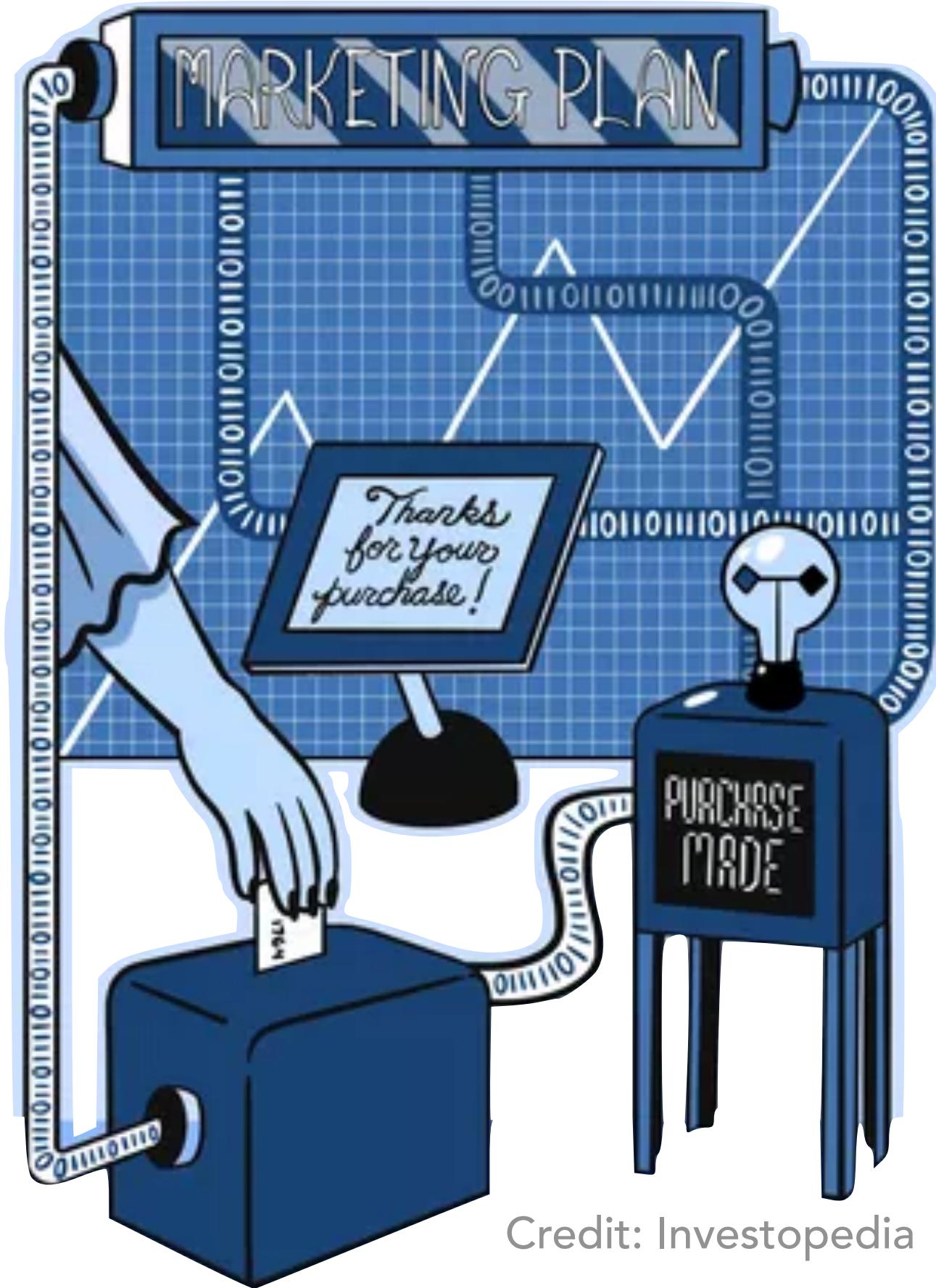
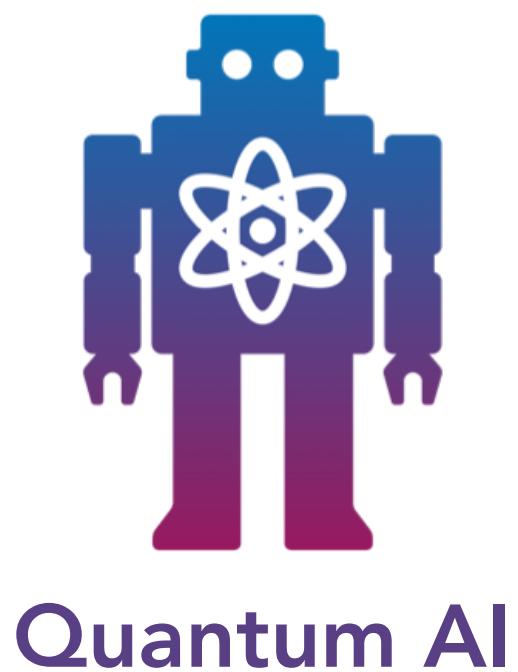
Quantum AI

Data loading problem
(data loading \gg computation)

Exponentially large QRAM

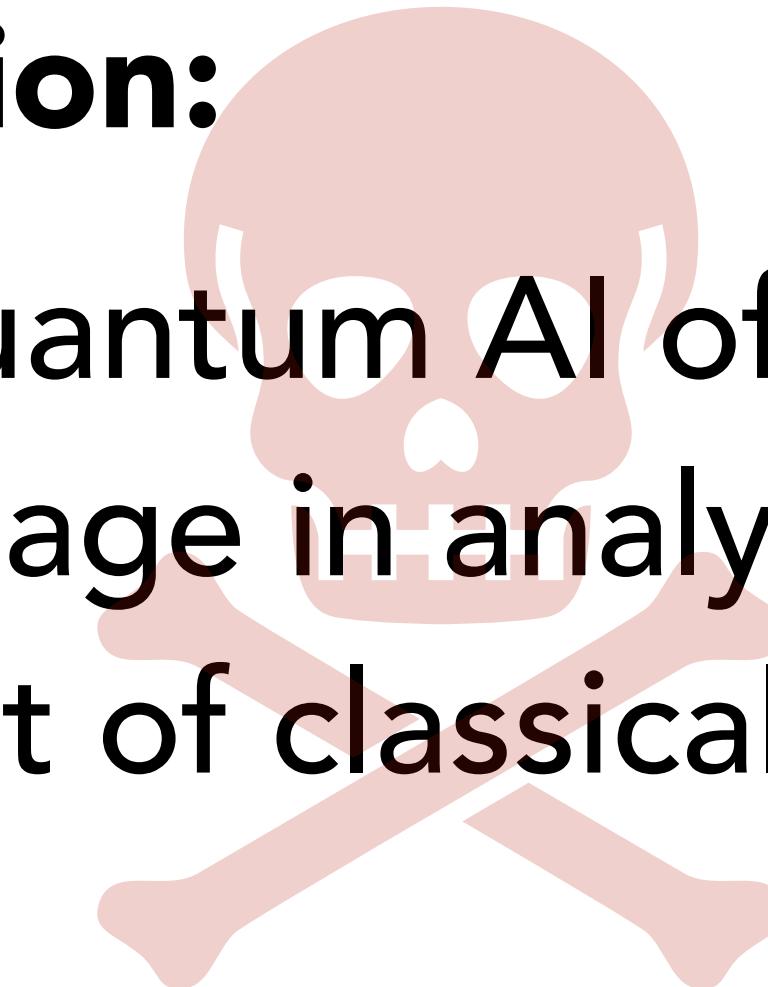
Only polynomial speedup
(dequantization)

Quantum Advantage for Analyzing Classical Data

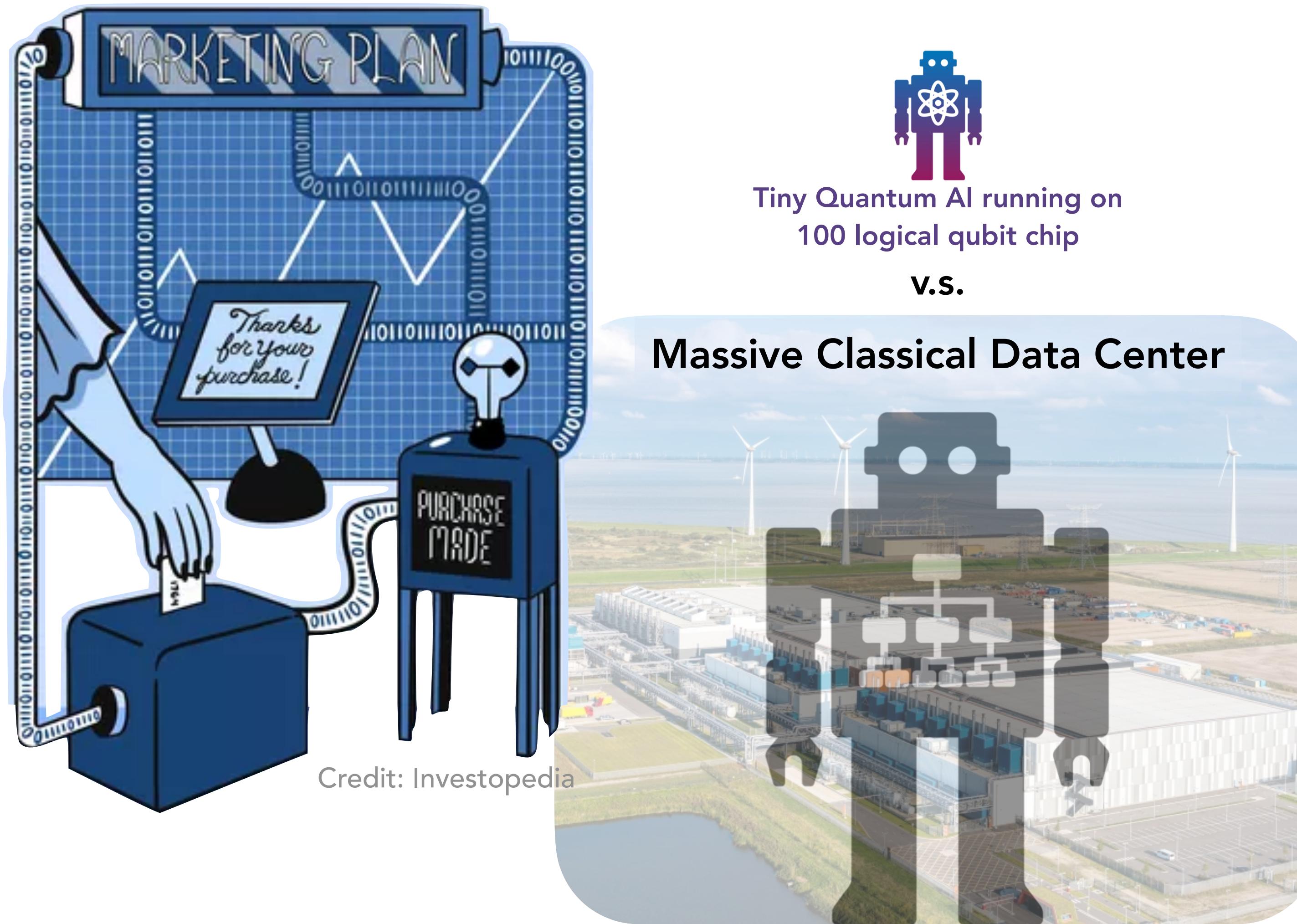


Question:

Can quantum AI offer useful advantage in analyzing large amount of classical data?



Quantum Advantage for Analyzing Classical Data



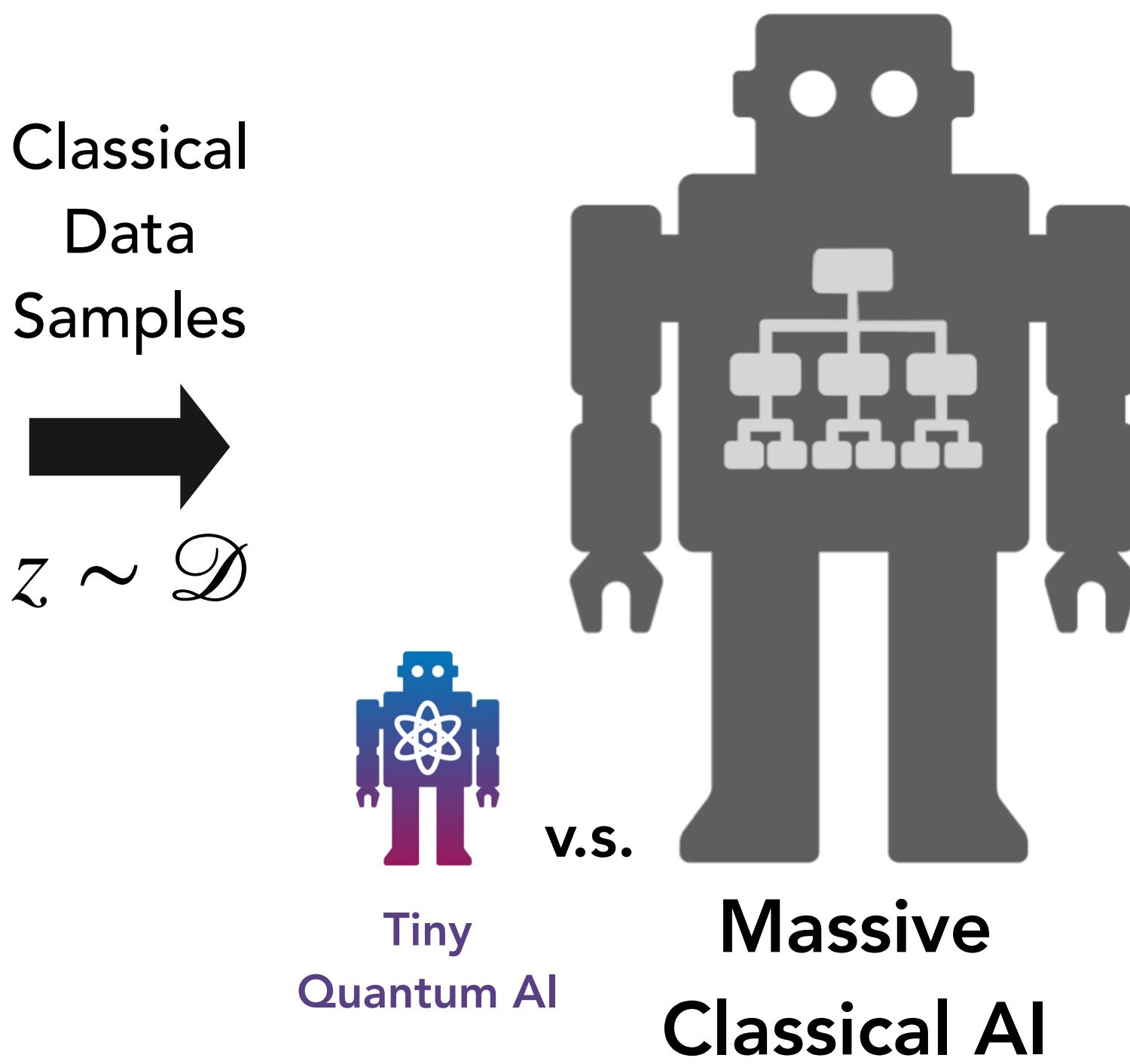
Tiny Quantum AI running on
100 logical qubit chip

v.s.

Question:
Can QML running on
small quantum chips
outperform
exponentially larger
classical machines?

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...



Question:

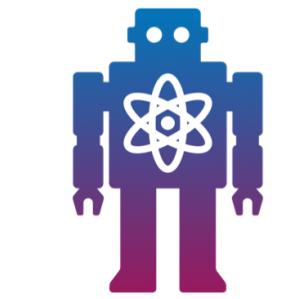
Can QML running on
small quantum chips
outperform
exponentially larger
classical machines?

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...

Classical
Data
Samples

$$\rightarrow z \sim \mathcal{D}$$



Tiny
Quantum AI

**Massive
Classical AI**



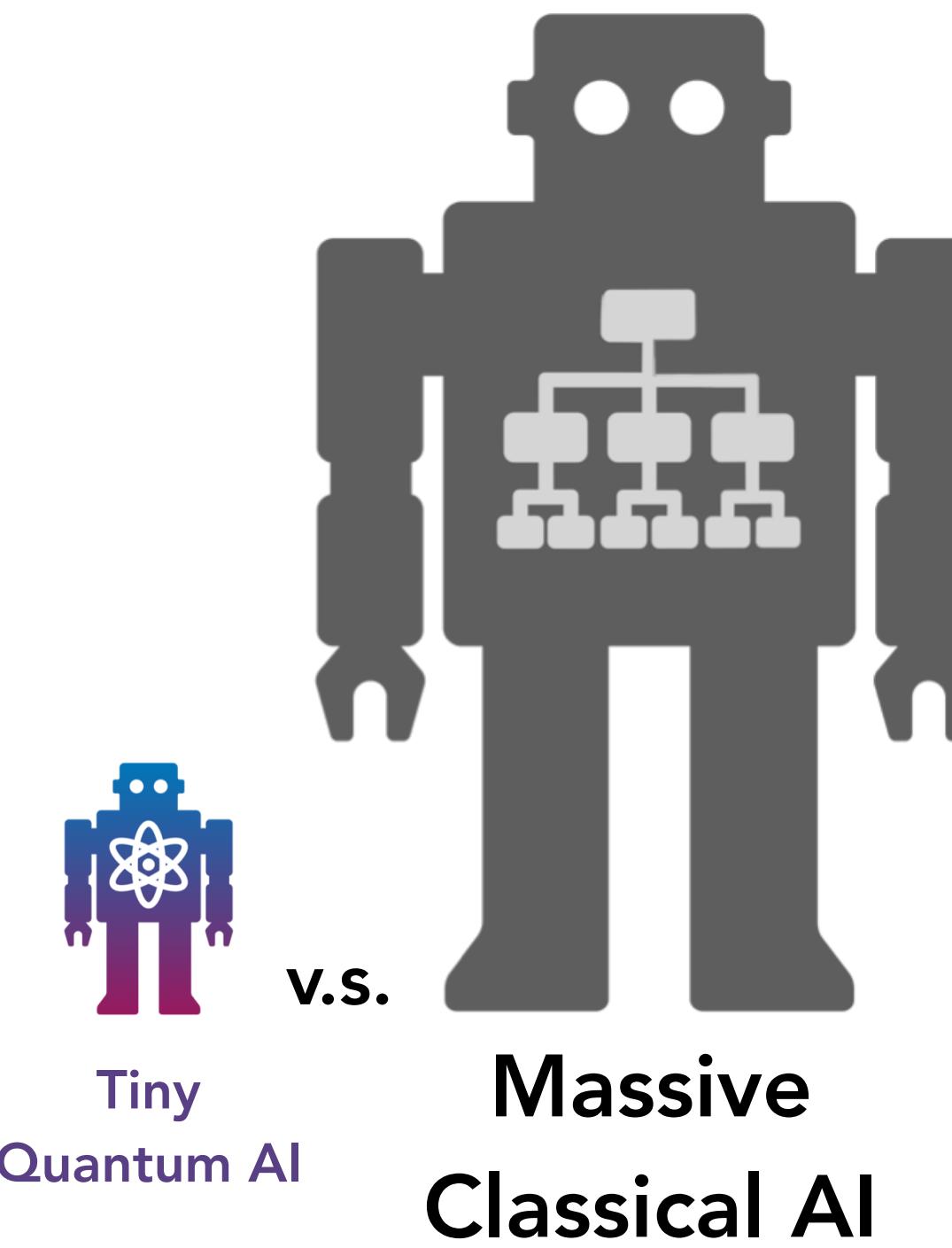
v.s.

High-level algorithmic idea:

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...

Classical
Data
Samples
→
 $z \sim \mathcal{D}$

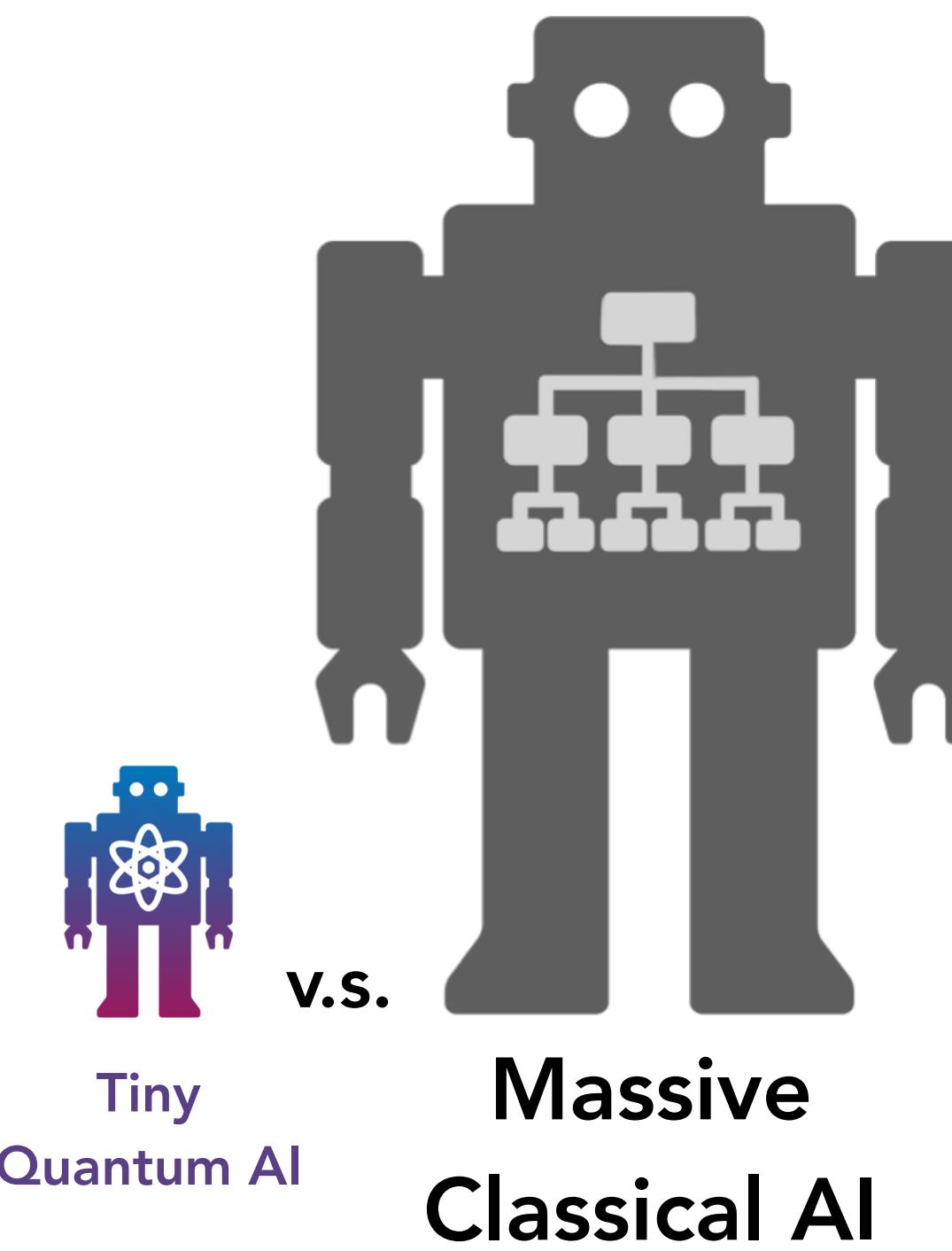


High-level algorithmic idea:
(1) Get data sample $z \sim \mathcal{D}$

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...

Classical
Data
Samples
→
 $z \sim \mathcal{D}$



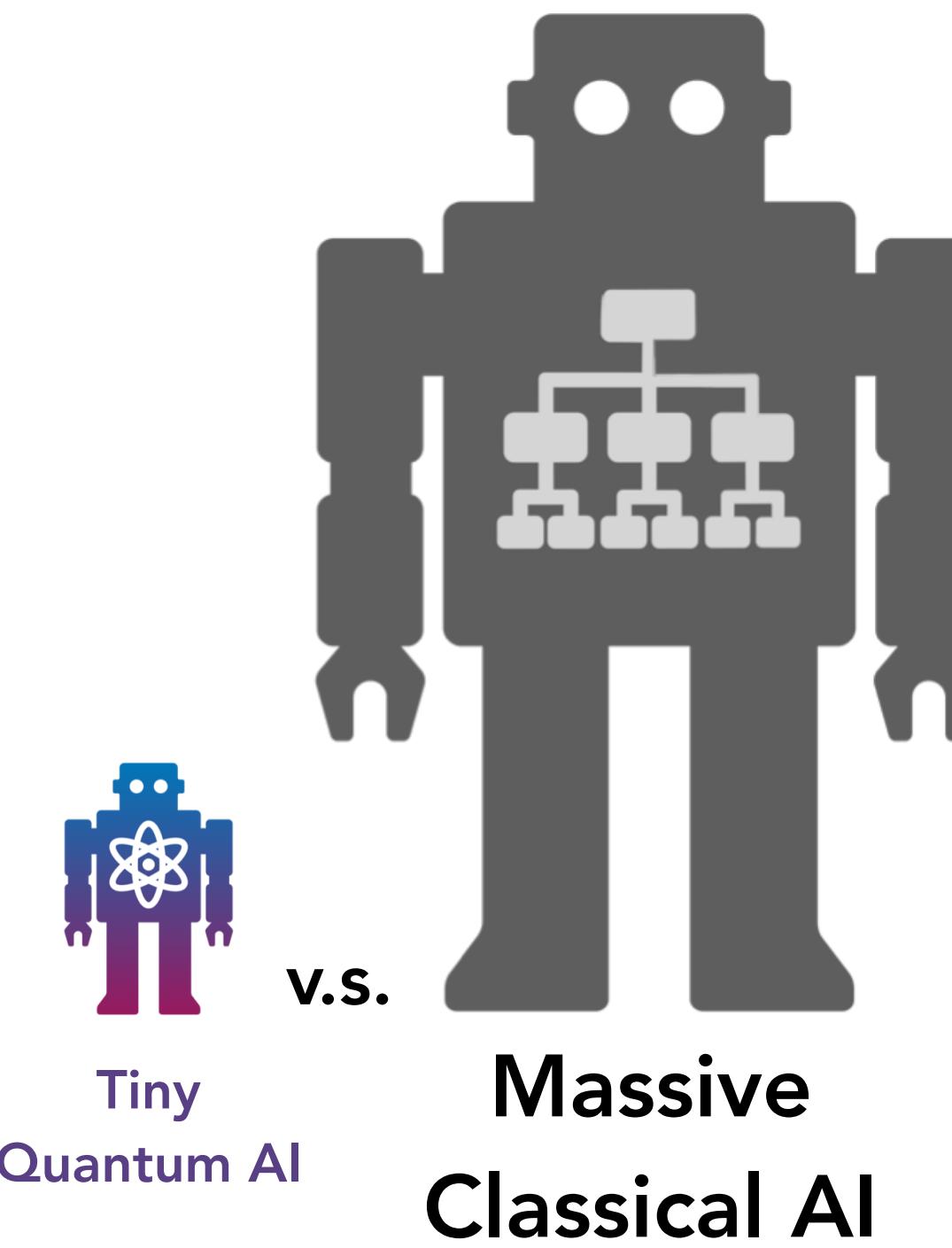
High-level algorithmic idea:

- (1) Get data sample $z \sim \mathcal{D}$
- (2) Create Hamiltonian term h_z

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...

Classical
Data
Samples
→
 $z \sim \mathcal{D}$



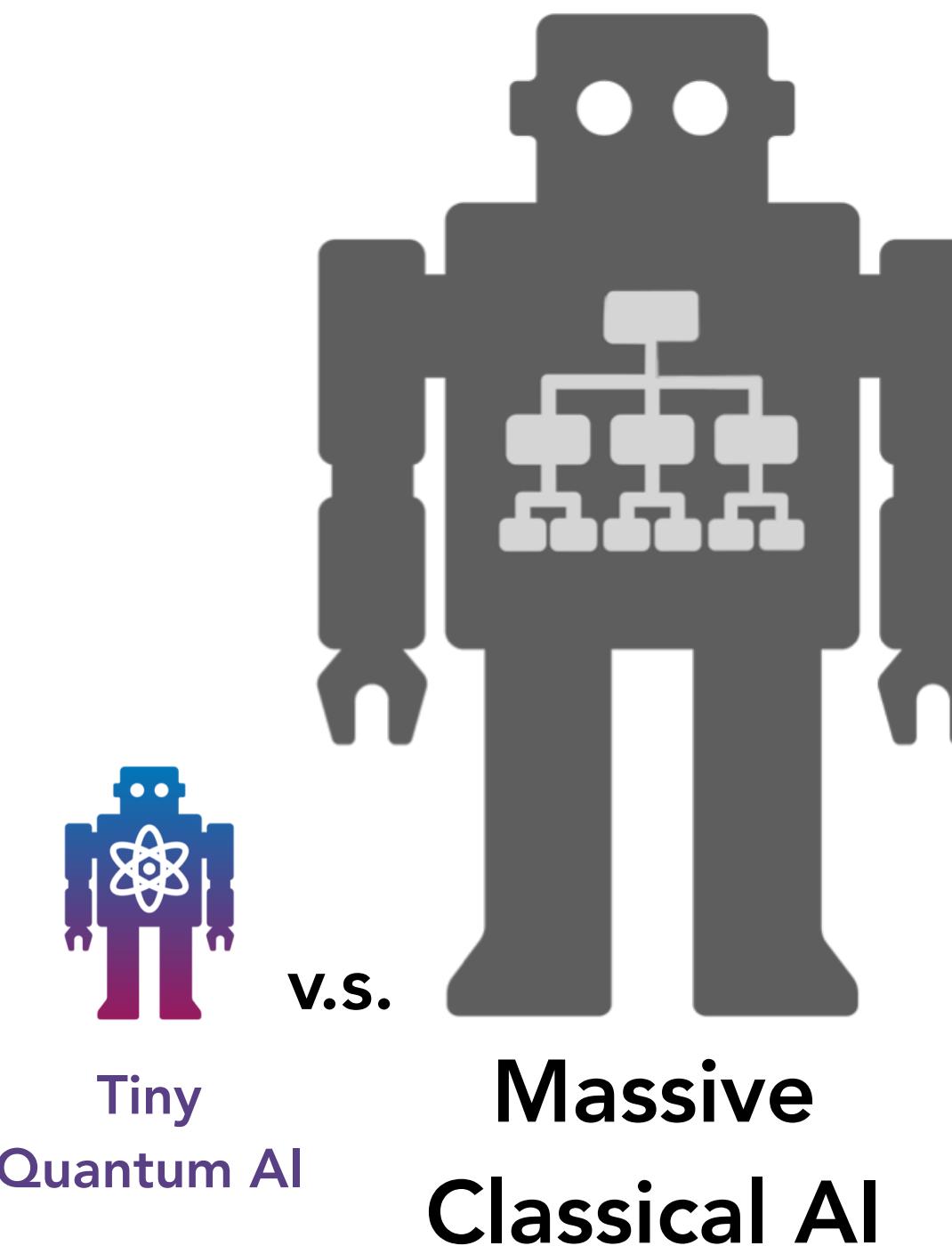
High-level algorithmic idea:

- (1) Get data sample $z \sim \mathcal{D}$
- (2) Create Hamiltonian term h_z
- (3) Evolve under $e^{-i\Delta t \cdot h_z}$

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...

Classical
Data
Samples
→
 $z \sim \mathcal{D}$

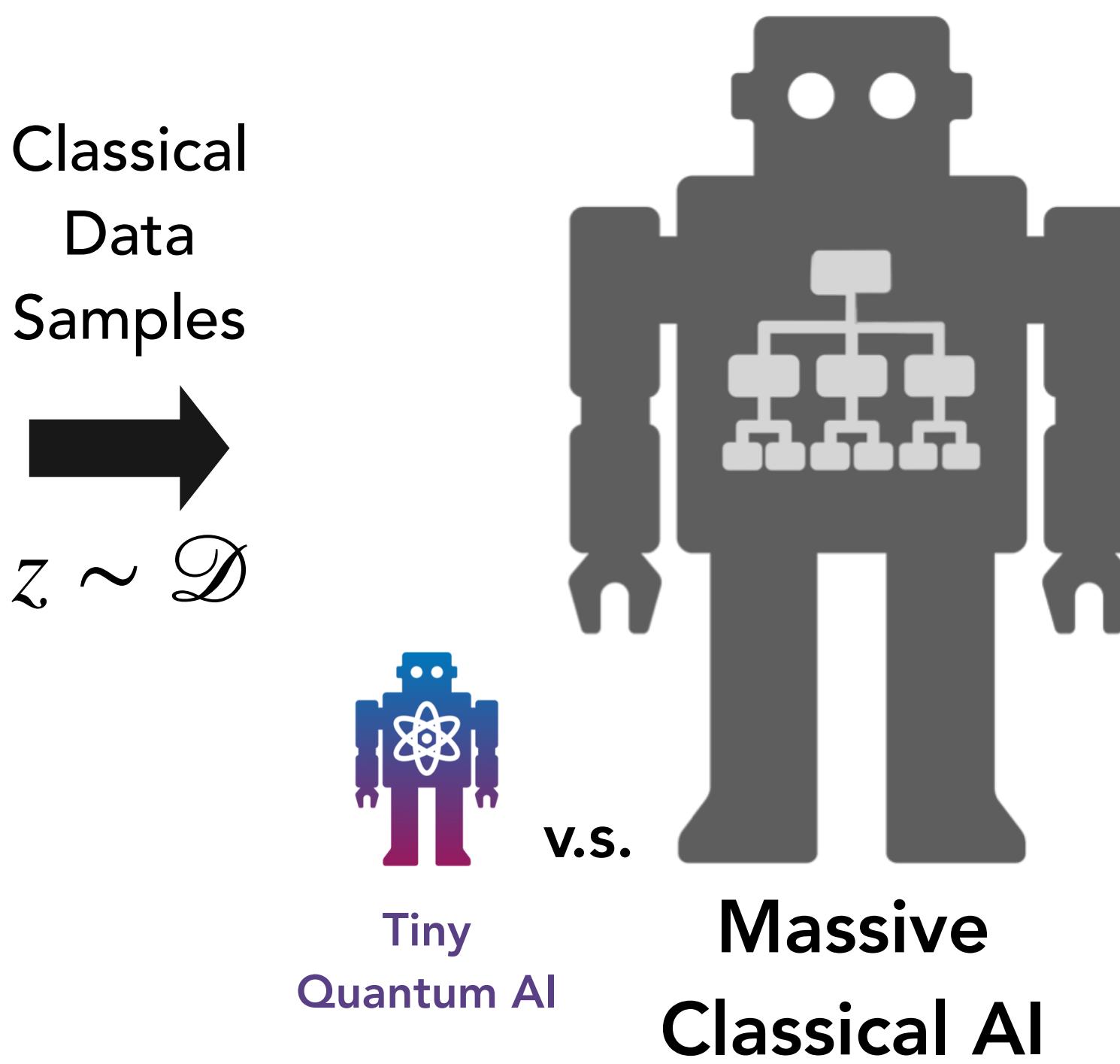


High-level algorithmic idea:

- (1) Get data sample $z \sim \mathcal{D}$
- (2) Create Hamiltonian term h_z
- (3) Evolve under $e^{-i\Delta t \cdot h_z}$
- (4) Repeat

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...



High-level algorithmic idea:

- (1) Get data sample $z \sim \mathcal{D}$
- (2) Create Hamiltonian term h_z
- (3) Evolve under $e^{-i\Delta t \cdot h_z}$
- (4) Repeat

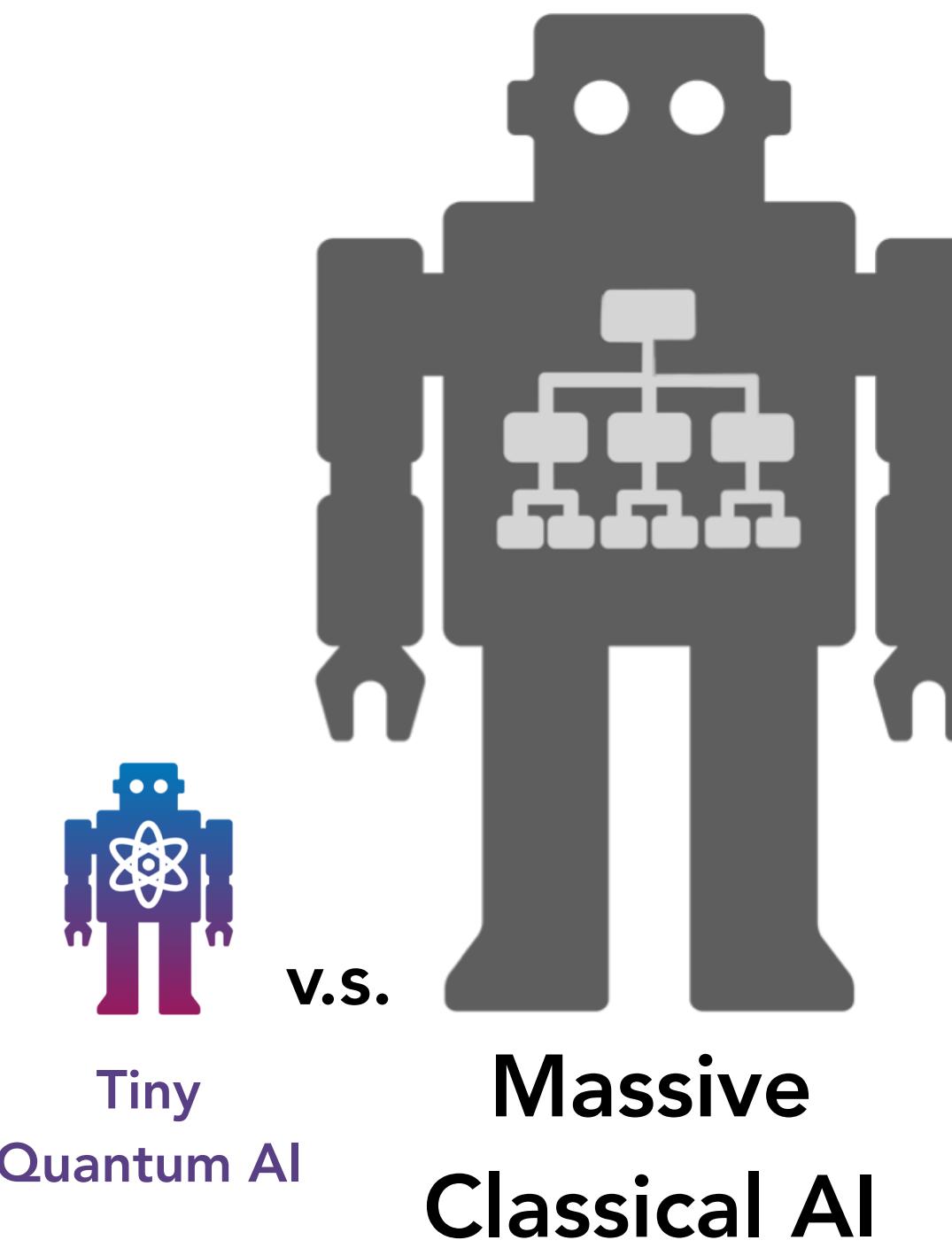
After seeing some samples,
the random unitary converges to
 $e^{-it \cdot \mathbb{E}_{z \sim \mathcal{D}}[h_z]}$ for a tunable t .

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...

Classical
Data
Samples

\rightarrow
 $z \sim \mathcal{D}$

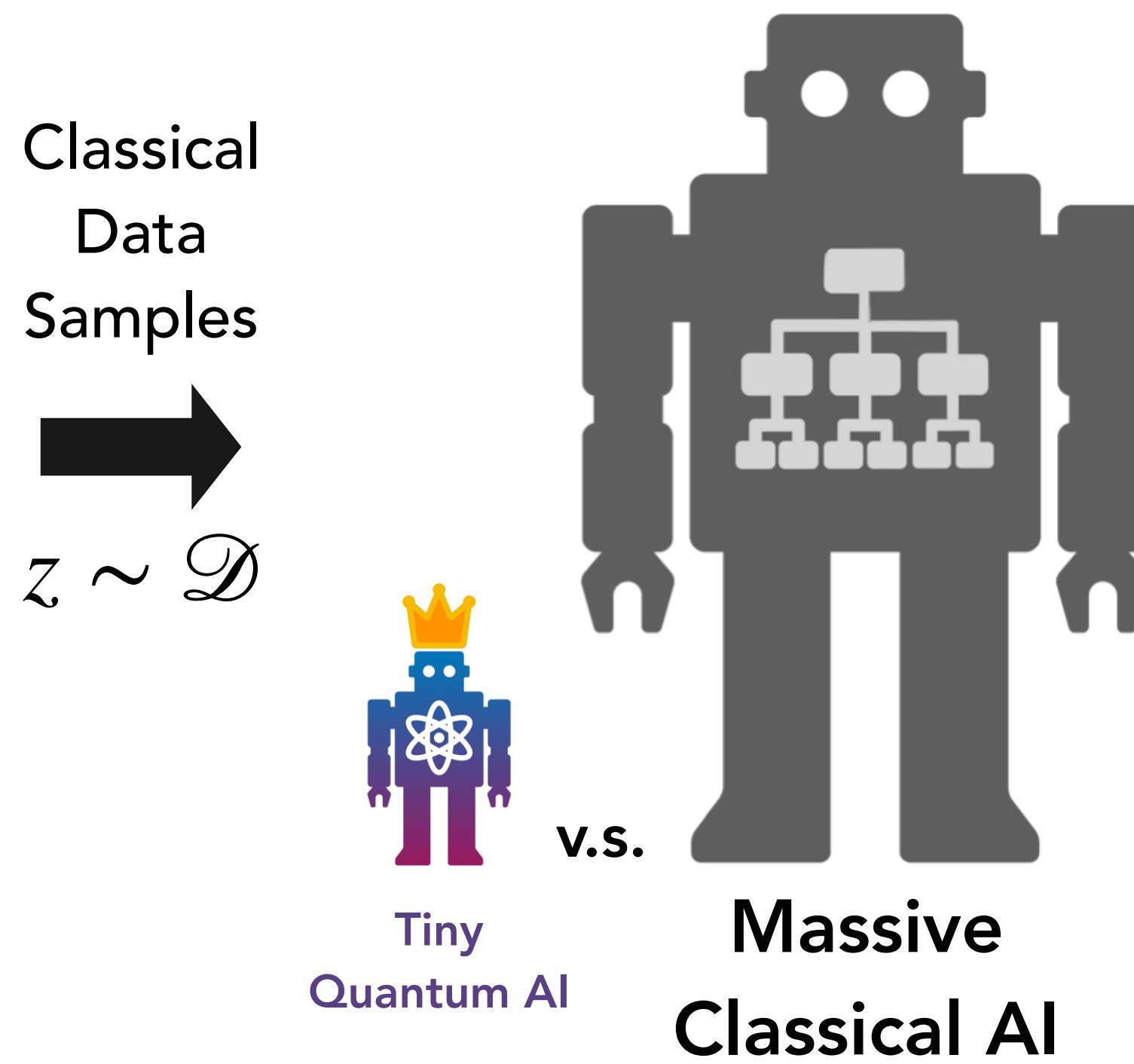


Central Idea:

Replace **QRAM** with
a **quantum oracle**
sketched from
classical data samples.

Quantum Advantage for Analyzing Classical Data

User data, internet data,
sensor data, financial data,
consumer data, market data, ...



Claim:

With $\mathcal{O}(N)$ samples,
poly($\log N$)-qubit machine
can solve SVM, PCA, ...
better than any **classical**
machines with $\mathcal{O}(N^{0.99})$ **bits**.

Where do we go from here?

- ❖ **AI for Quantum Technology:**

How to **accelerate/automate** quantum technology with AI?

- ❖ **Quantum Advantage for Classical AI:**

Can quantum machines achieve **significant advantage** in learning problems arising from **classical ML/AI**?

Where do we go from here?

- ❖ **Physics of Learning:**

What are the **fundamental limit** in **space**, **time**, and **energy** governing **any** physical system that can learn?

Where do we go from here?

- ❖ **Physics of Learning:**

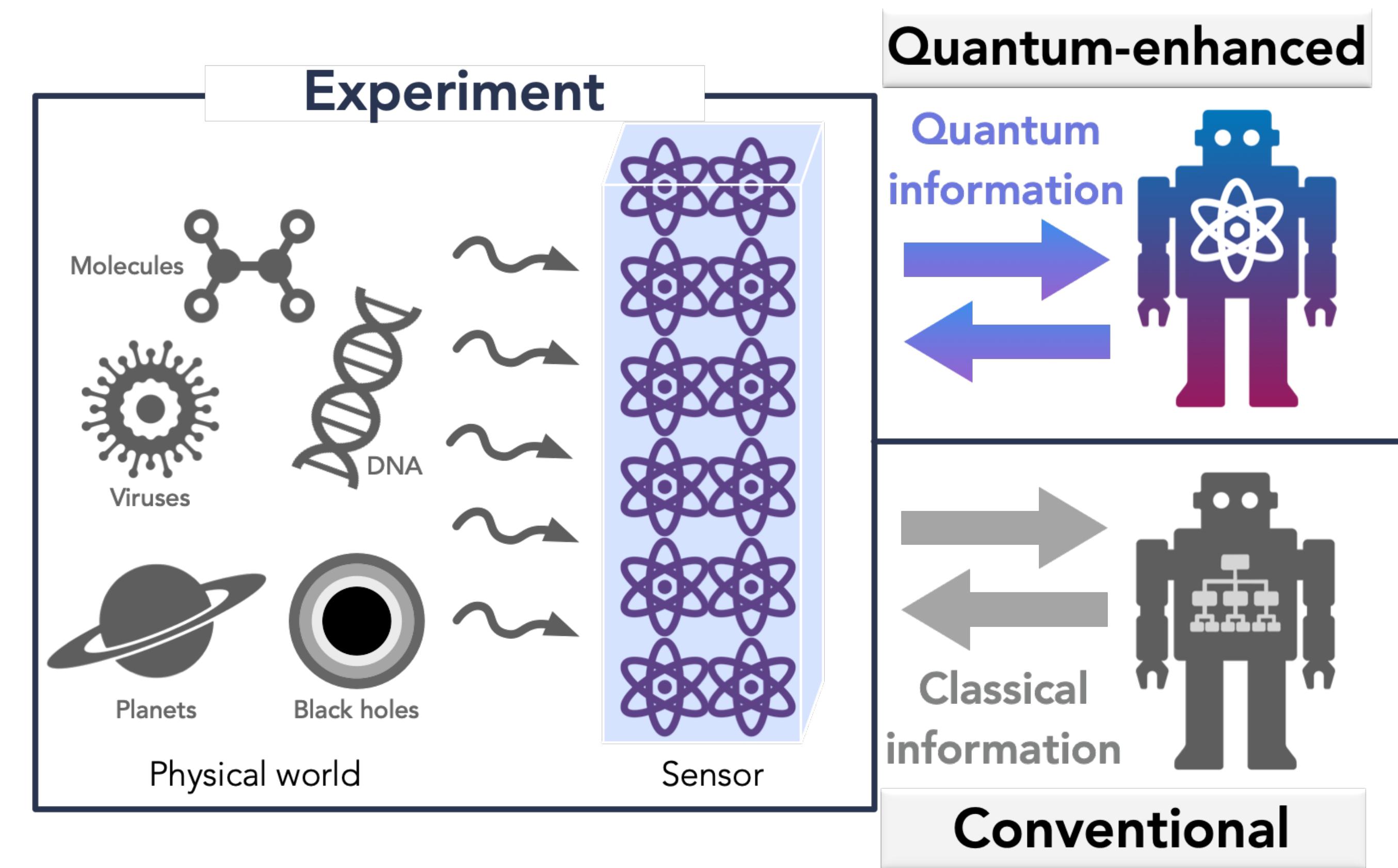
What are the **fundamental limit** in **space**, **time**, and **energy** governing **any** physical system that can learn?

- ❖ **Quantum AI Discovery:**

How can quantum machines learn to **discover new physics**?

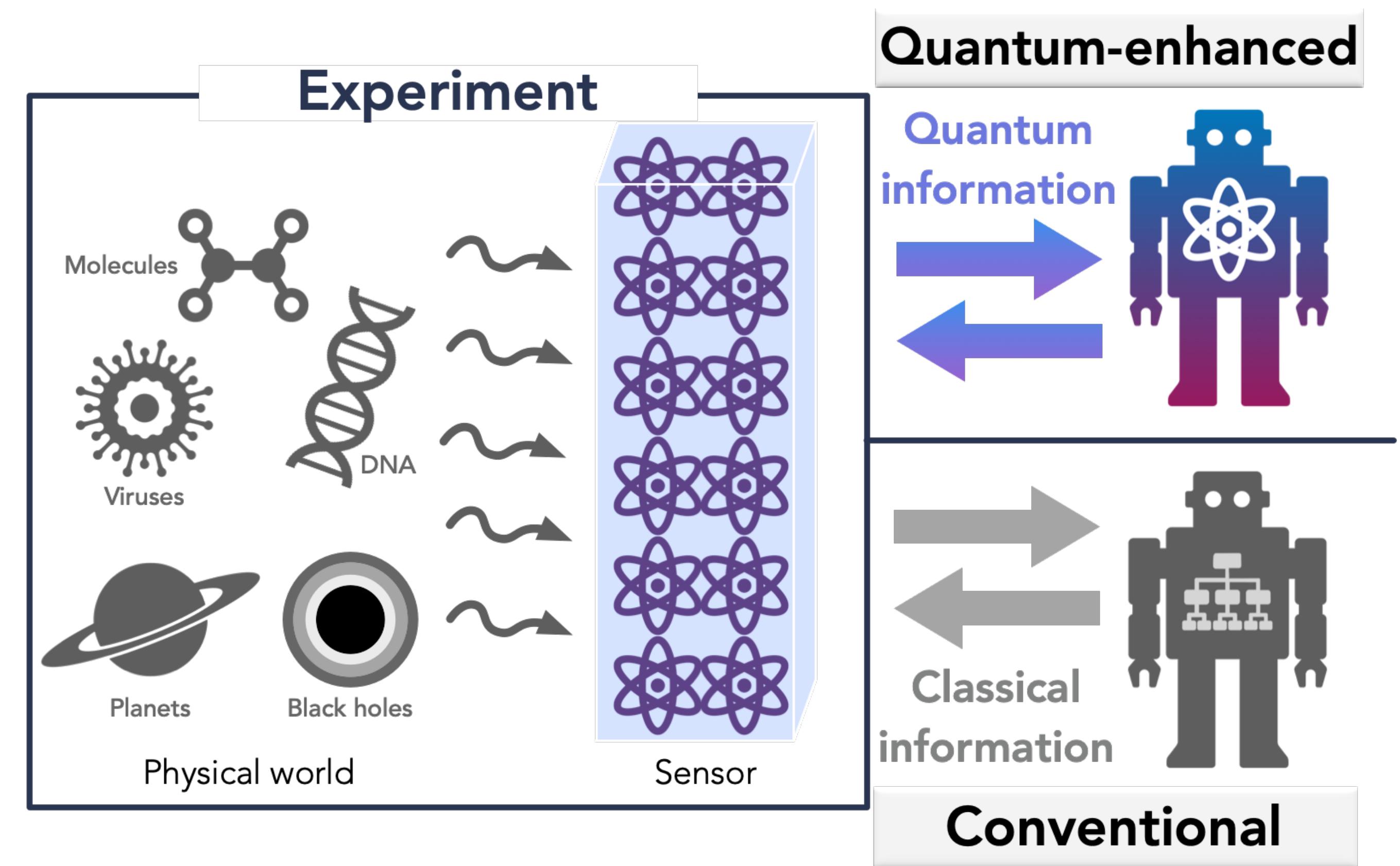
Sensing Classical Fields

- Sensing classical fields has wide-ranging applications.



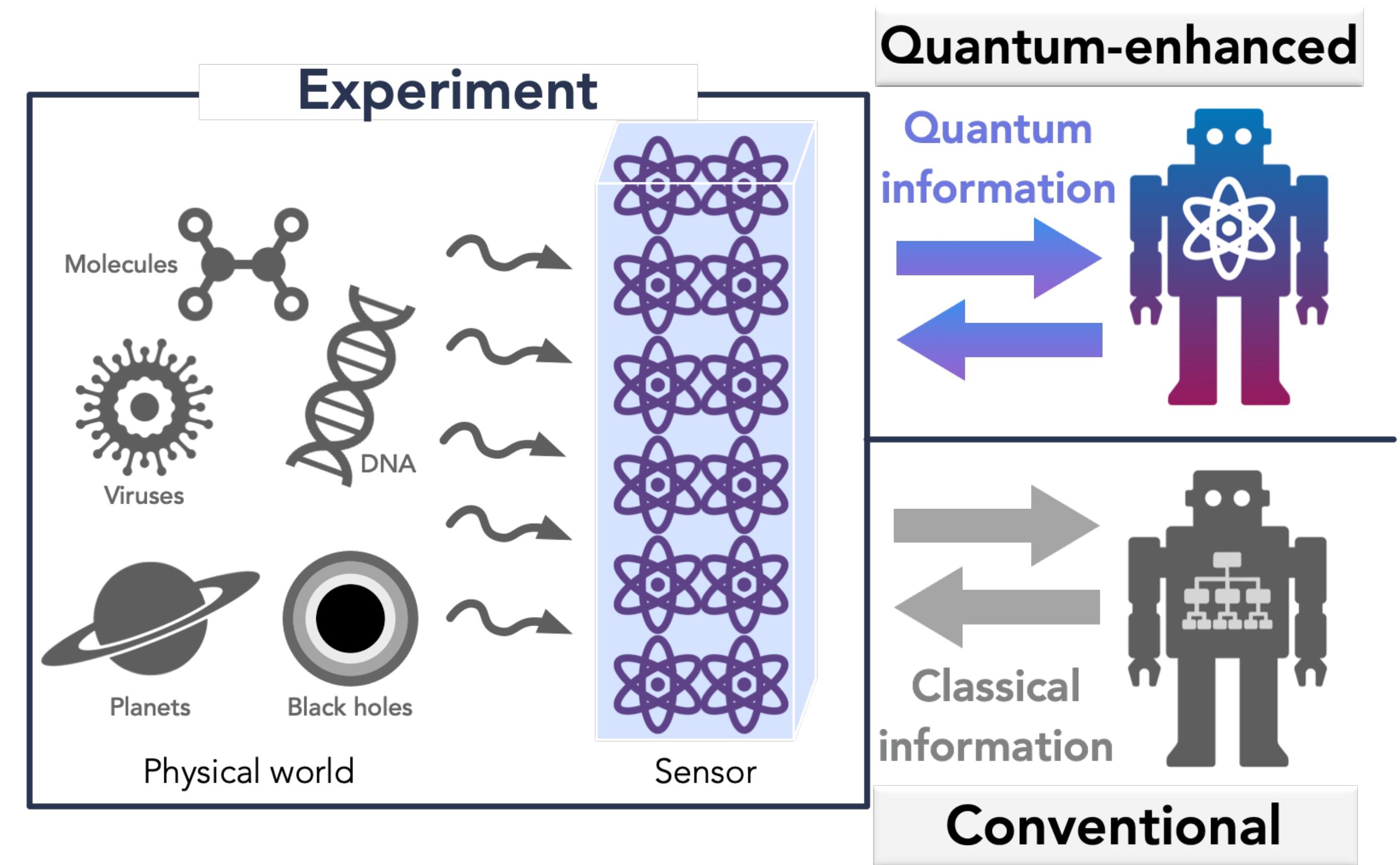
Sensing Classical Fields

- Sensing classical fields has wide-ranging applications.
- Applications:
Probing **material** properties,



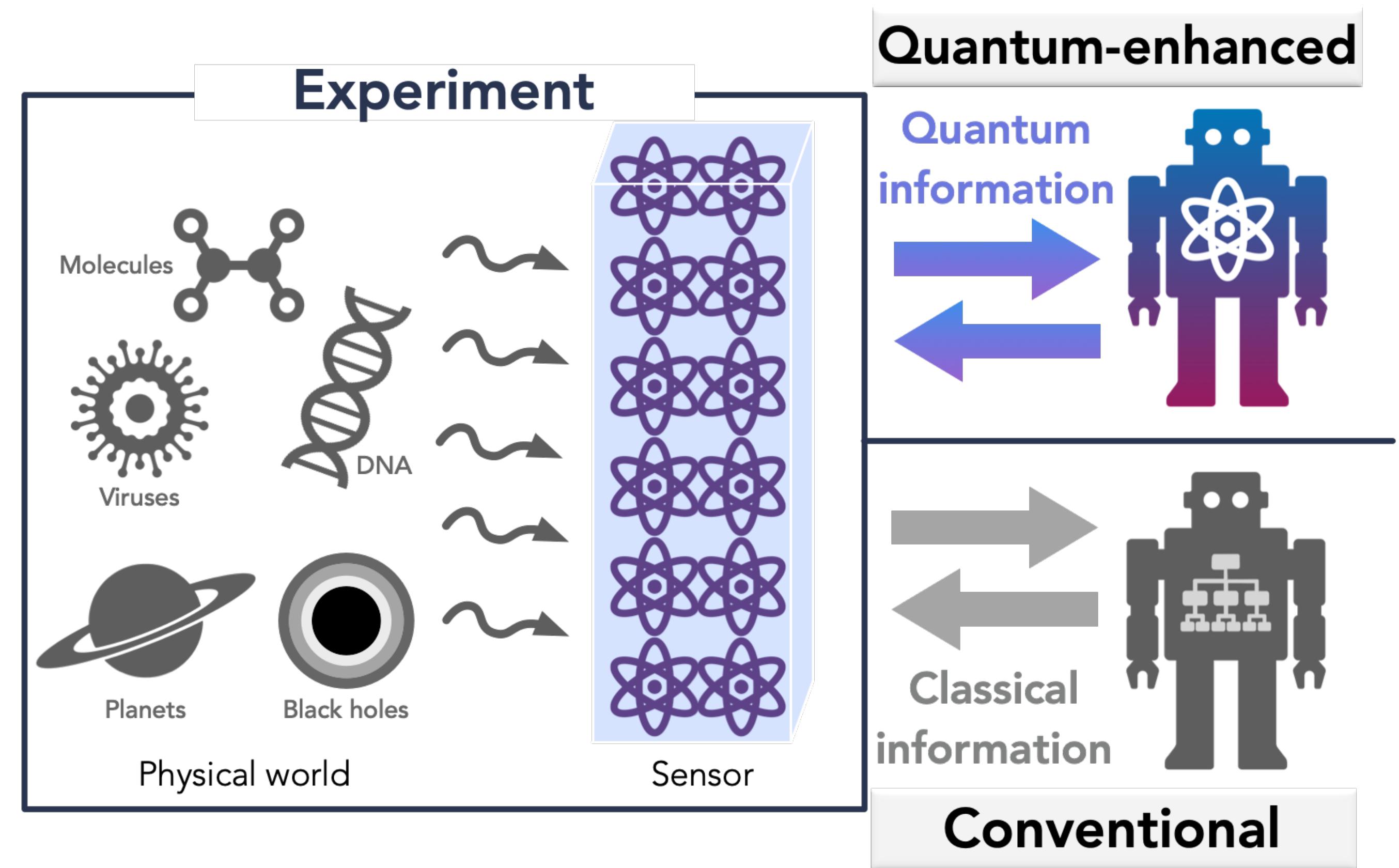
Sensing Classical Fields

- Sensing classical fields has wide-ranging applications.
- Applications:
Probing **material** properties,
Observing merging black holes,



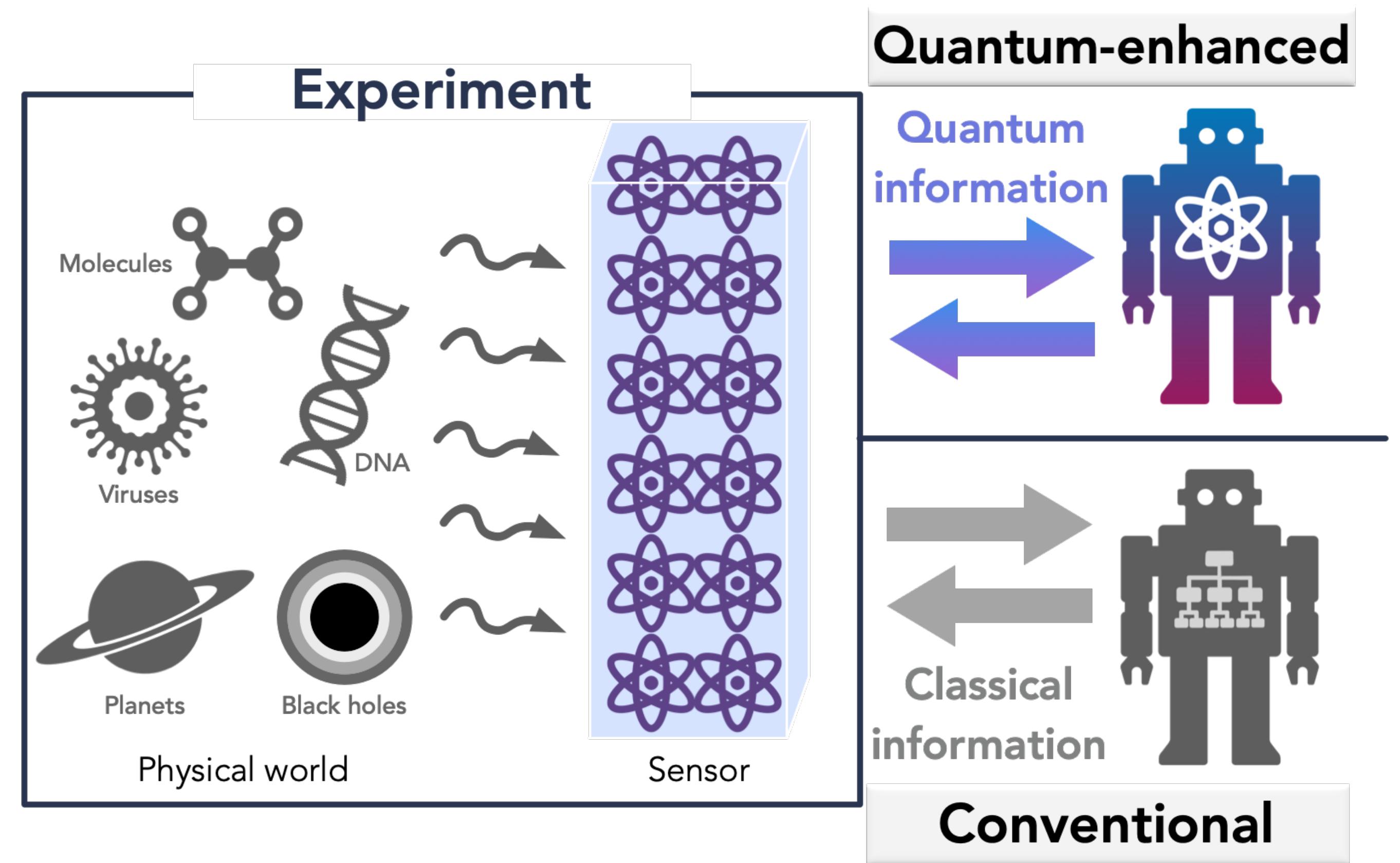
Sensing Classical Fields

- Sensing classical fields has wide-ranging applications.
- Applications:
Probing **material** properties,
Observing merging black holes,
Exploring **subterranean deposit**,



Sensing Classical Fields

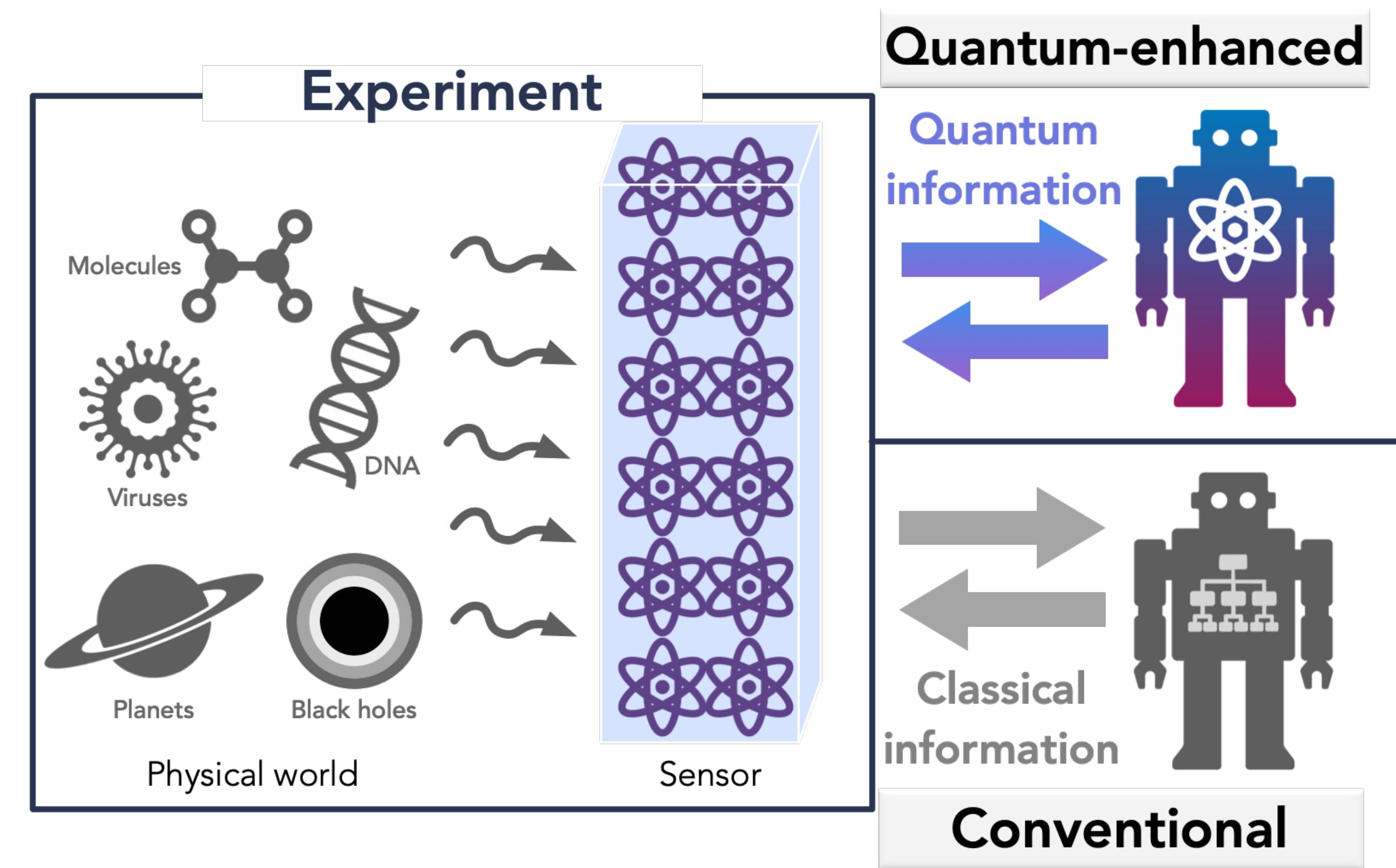
- Sensing classical fields has wide-ranging applications.
- Applications:
Probing **material** properties,
Observing merging black holes,
Exploring **subterranean deposit**,
Detecting dark matter, ...



Sensing Classical Fields

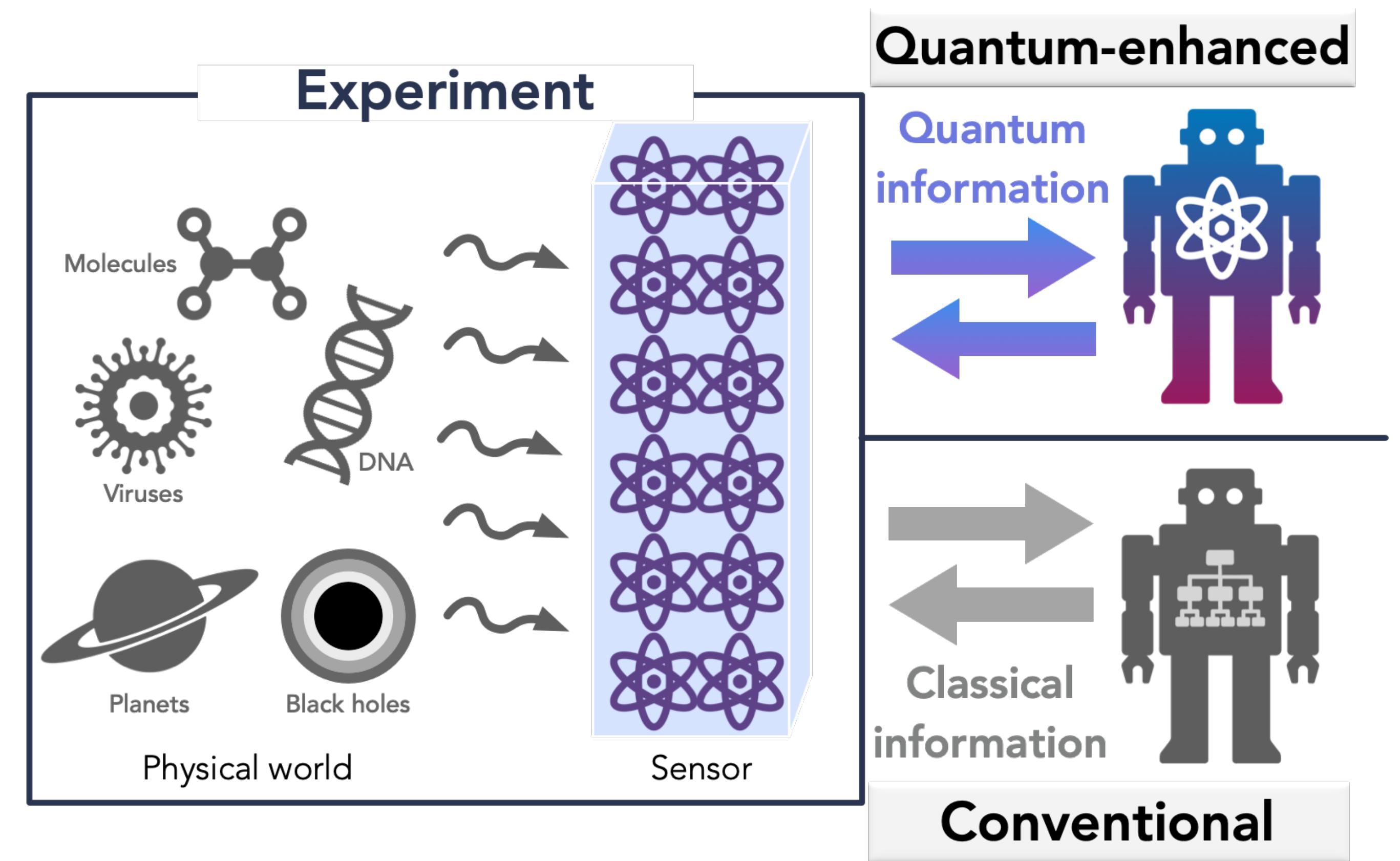
- Simplest task (from Lec. 1):

$$B(t) = B \text{ vs } B(t) = 0$$



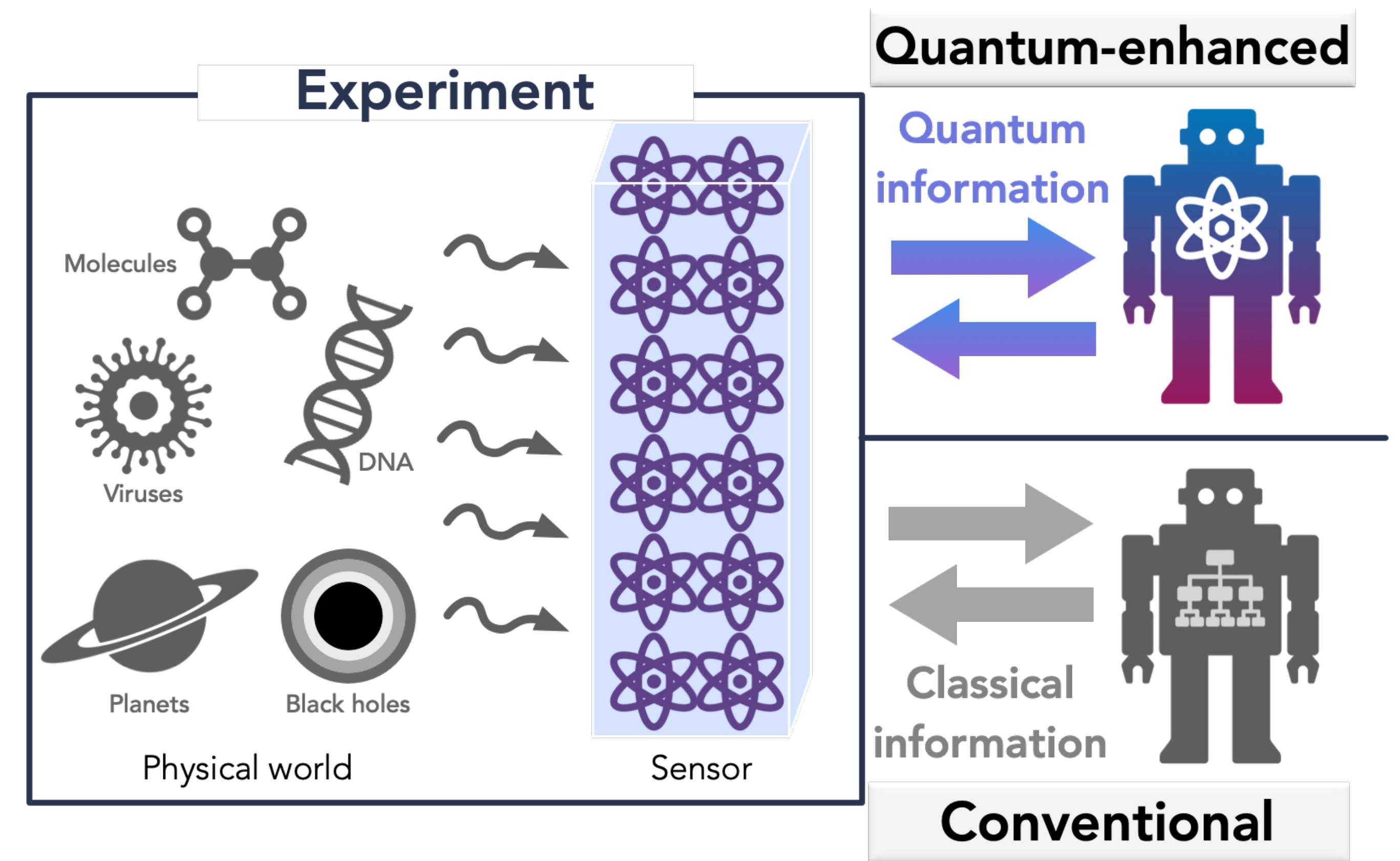
Sensing Classical Fields

- Simplest task (from Lec. 1):
 $B(t) = B$ vs $B(t) = 0$
- Sensing spin is affected by the Hamiltonian $H(t) = B(t) \cdot Z$



Sensing Classical Fields

- Simplest task (from Lec. 1):
 $B(t) = B$ vs $B(t) = 0$
- Sensing spin is affected by the Hamiltonian $H(t) = B(t) \cdot Z$
- Optimal time: $\Theta(1/B)$



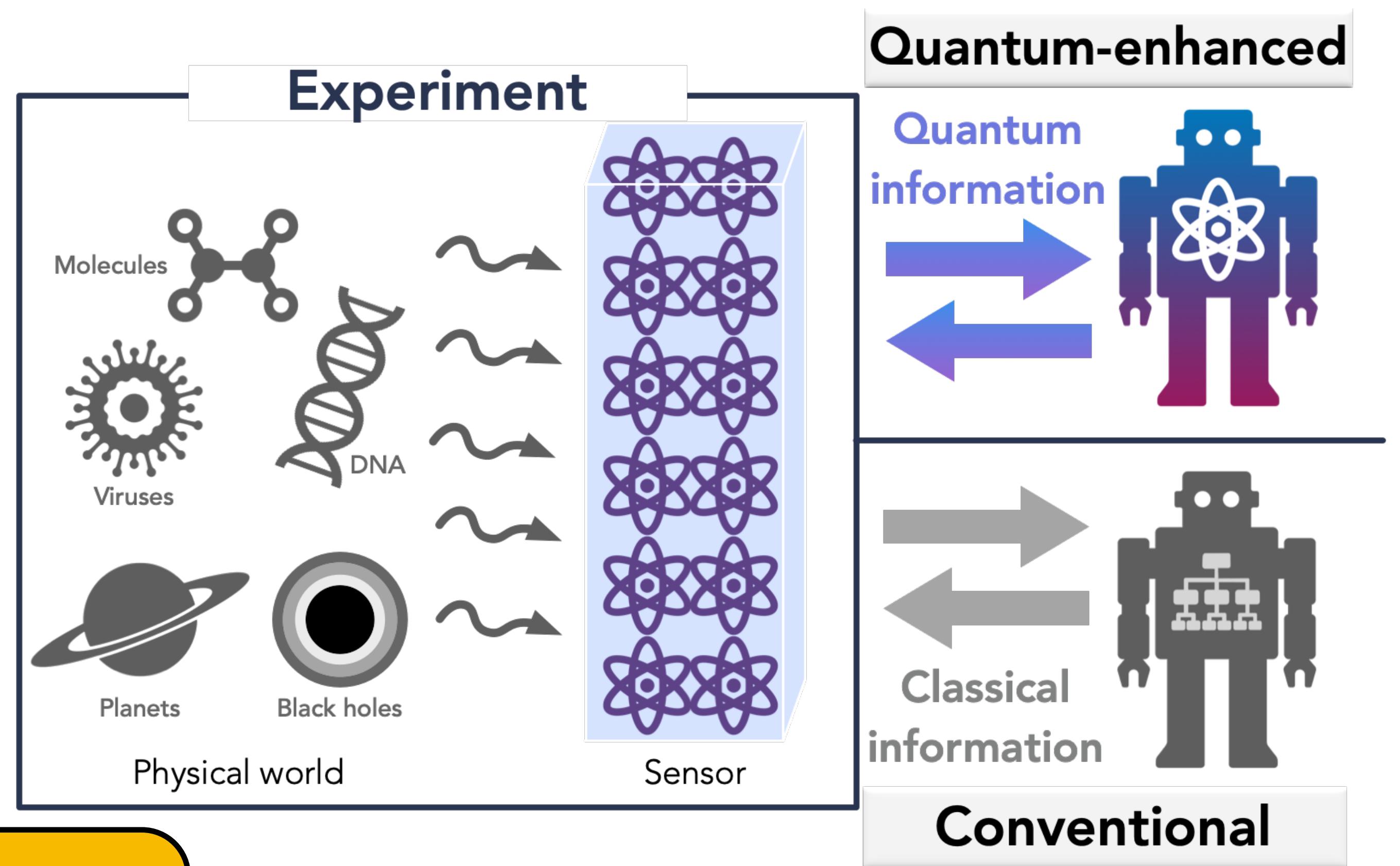
Sensing Classical Fields

- Simplest task (from Lec. 1):

$$B(t) = B \text{ vs } B(t) = 0$$

- Sensing spin is affected by the Hamiltonian $H(t) = B(t) \cdot Z$
- **Optimal** time: $\Theta(1/B)$

This optimality has spawned the field of **quantum sensing**

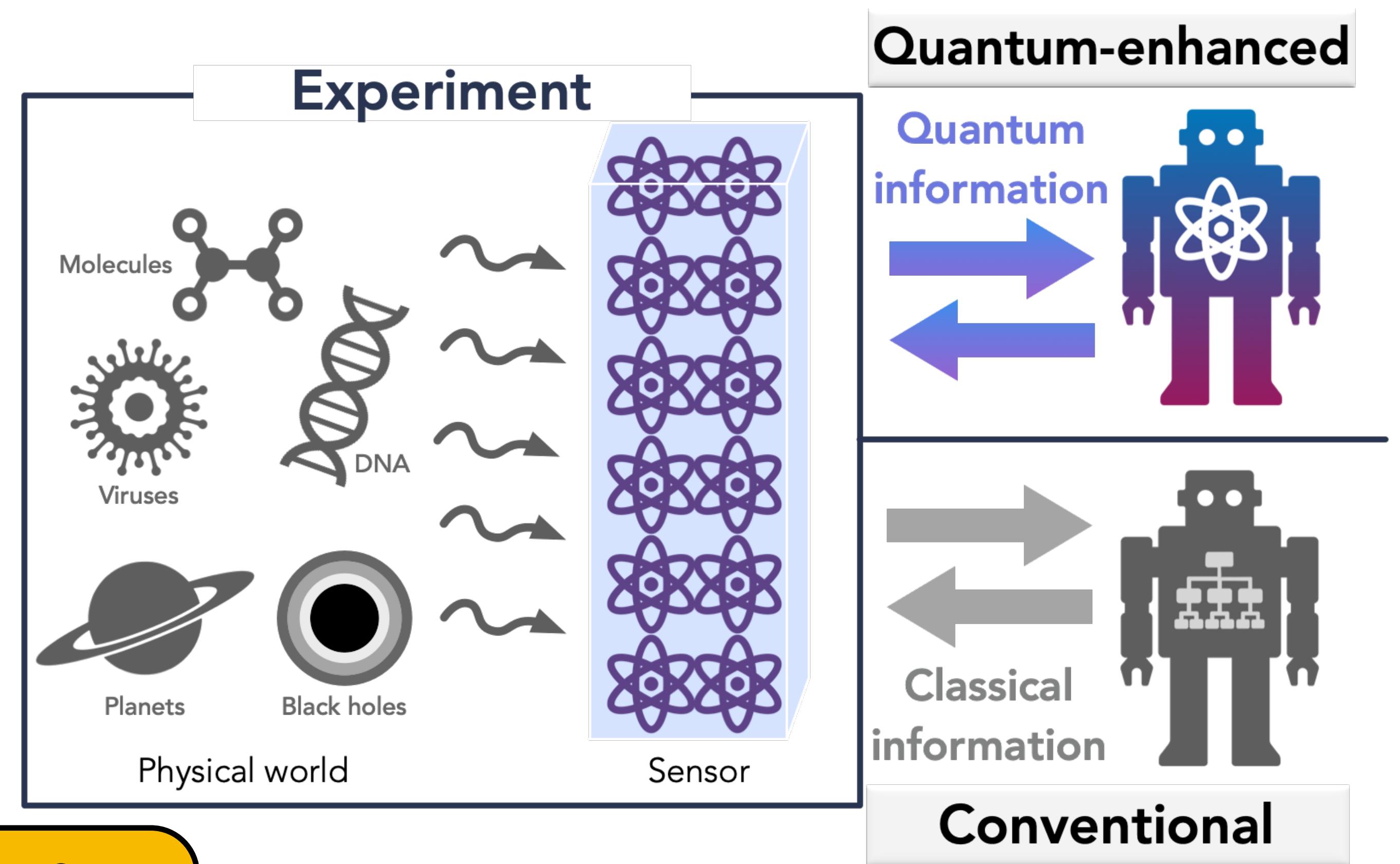


Sensing Classical Fields

- Simplest task (from Lec. 1):

$$B(t) = B \text{ vs } B(t) = 0$$

- Sensing spin is affected by the Hamiltonian $H(t) = B(t) \cdot Z$
- **Optimal** time: $\Theta(1/B)$

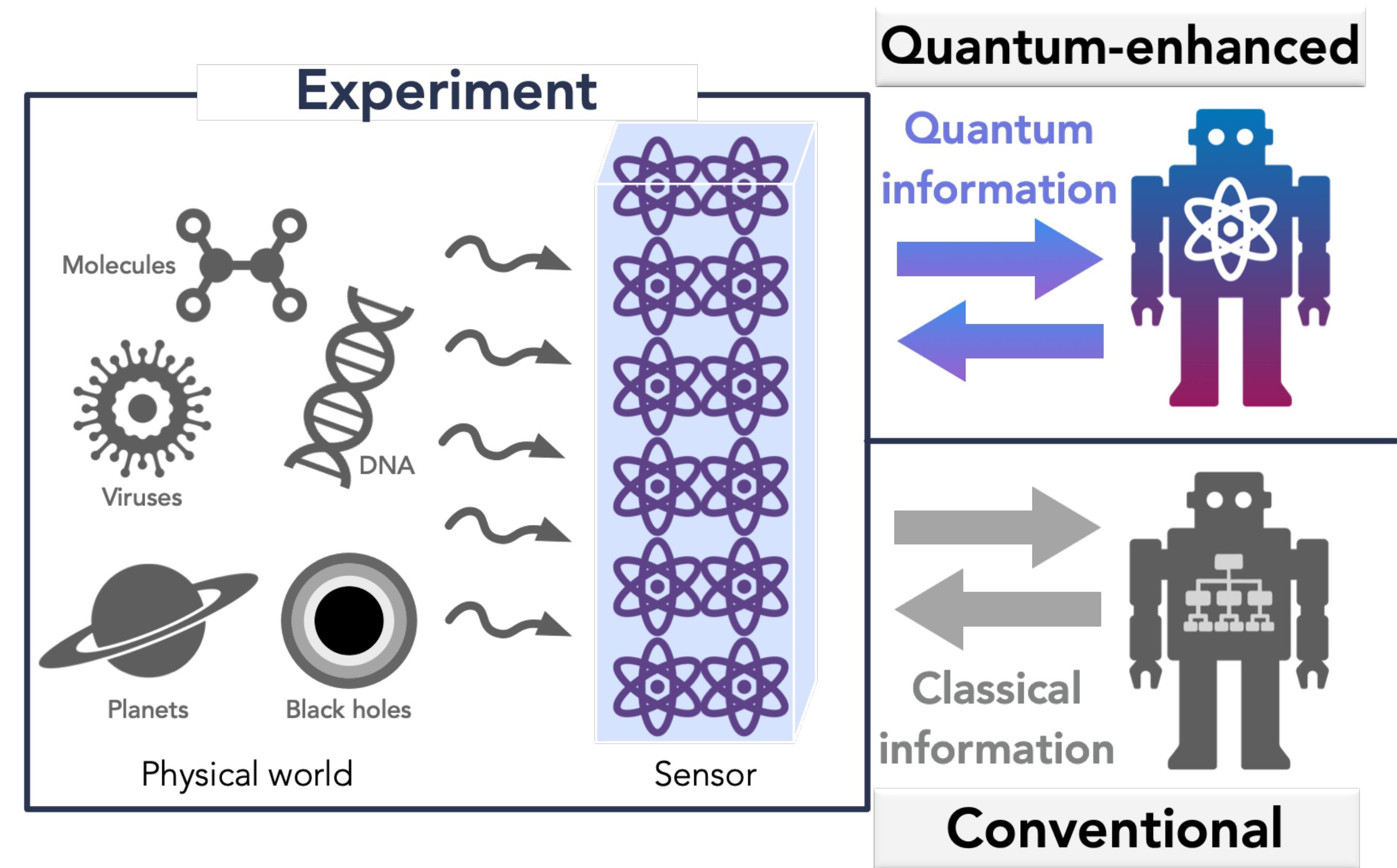


But **no need** for quantum AI & the speedup is just quadratic.

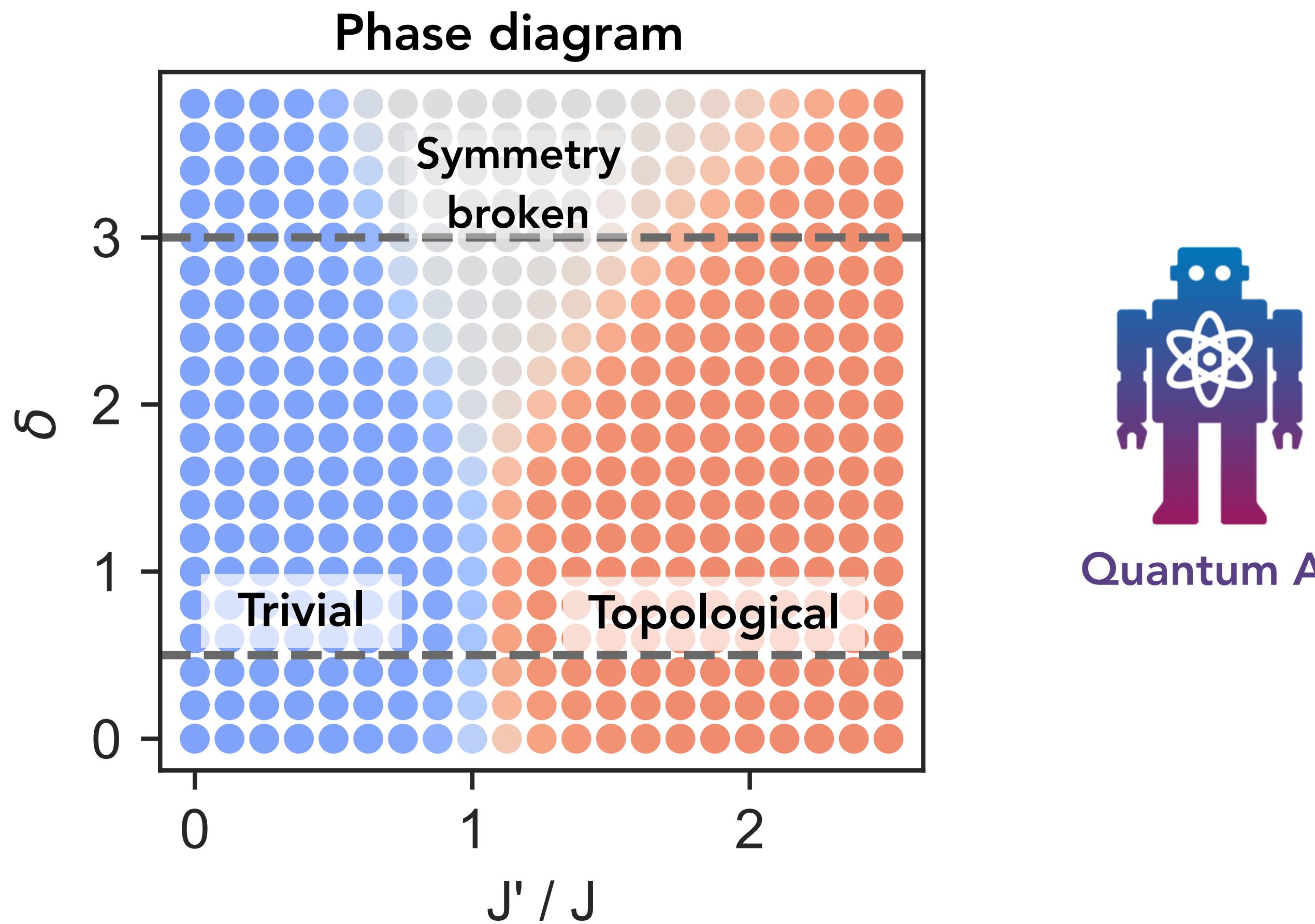
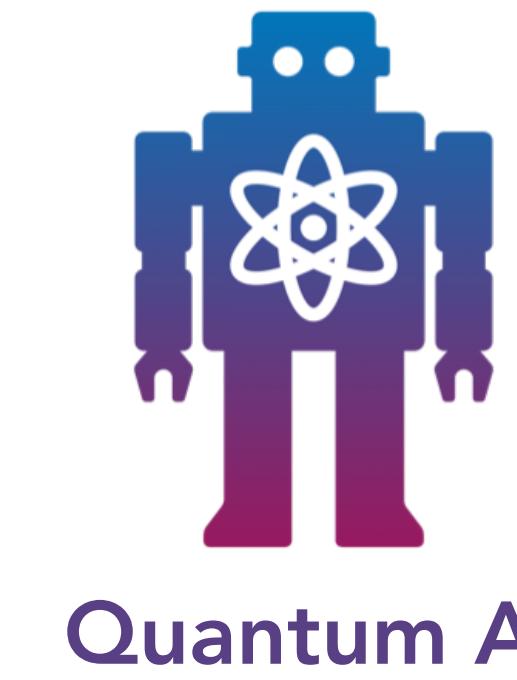
Sensing Classical Fields

Question:

Can quantum AI offer
superpolynomial
quantum advantage
in sensing classical fields?

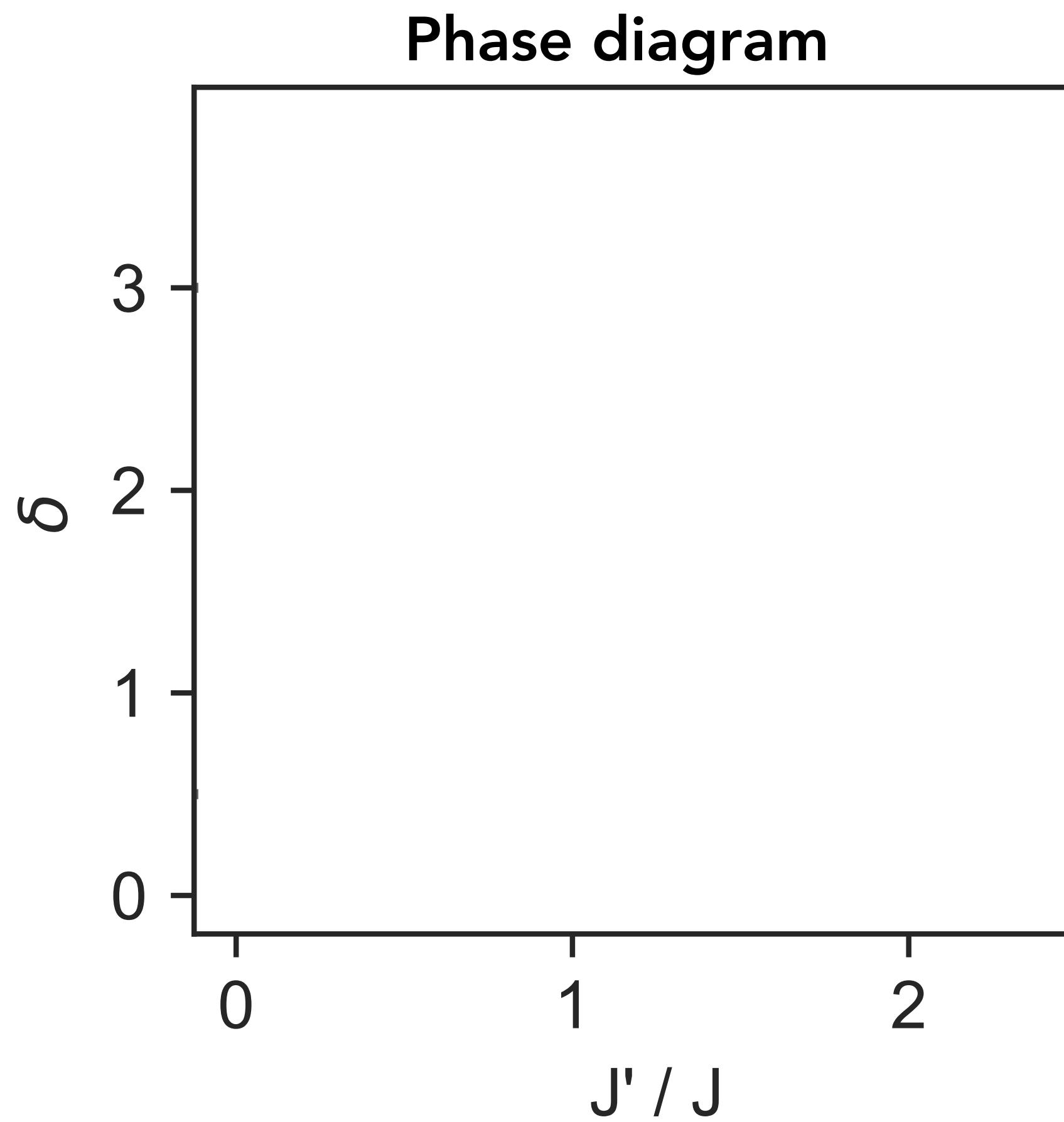
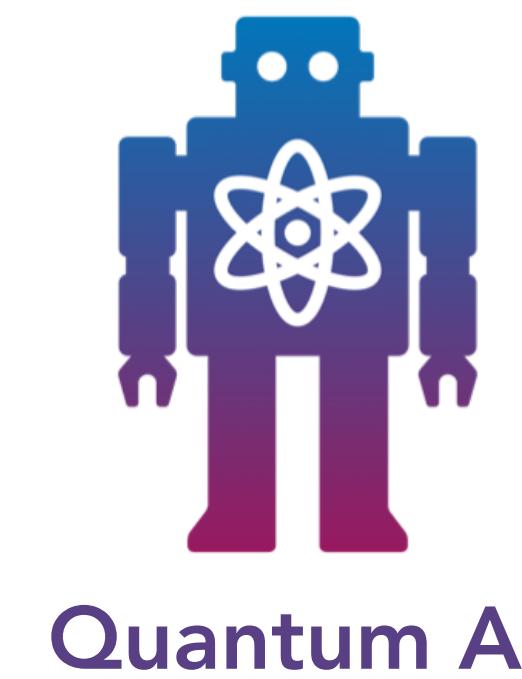


Discovering New Phases of Matter



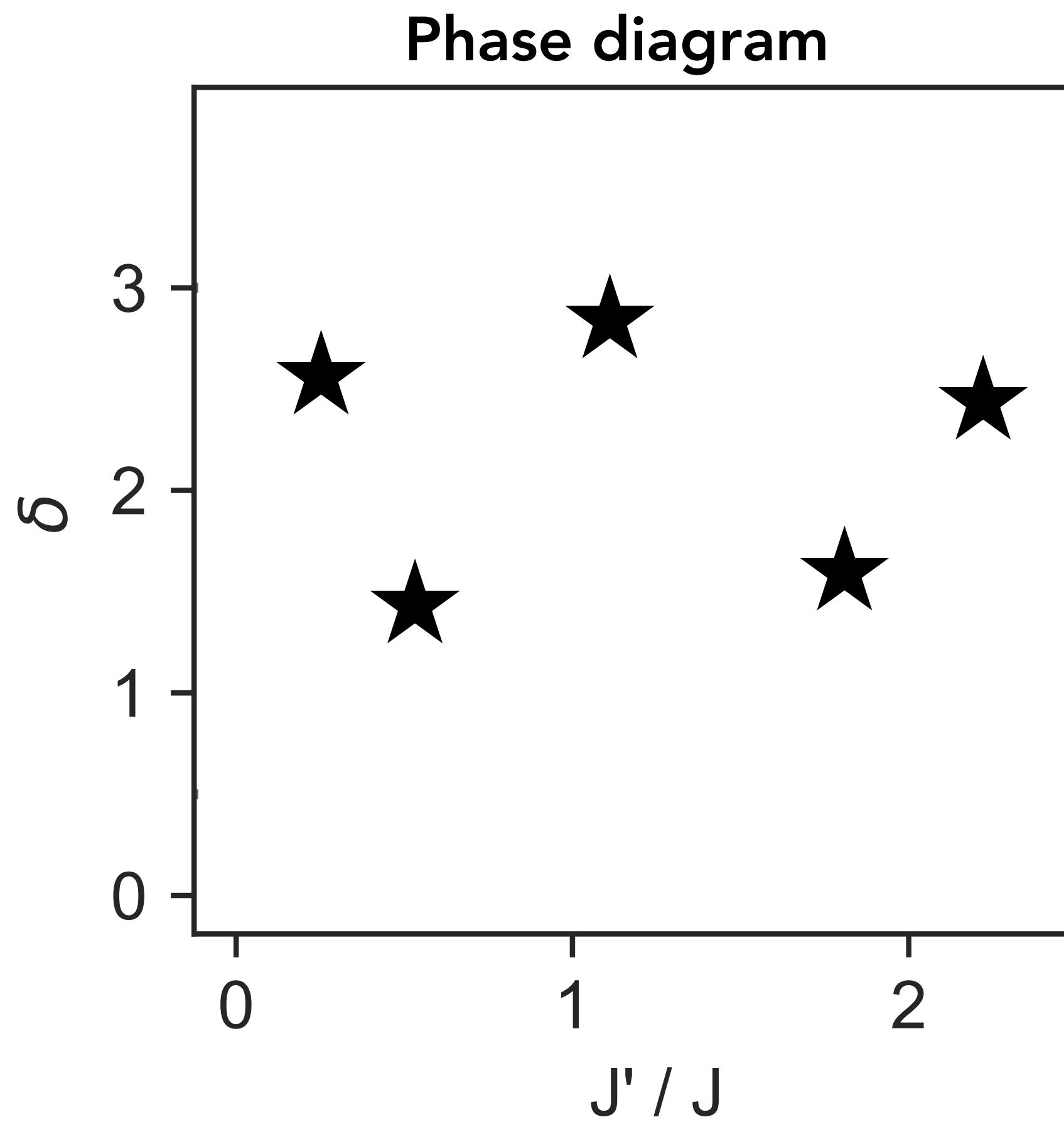
Question:
How can quantum AI
discover phases of
matter on its own?

Discovering New Phases of Matter

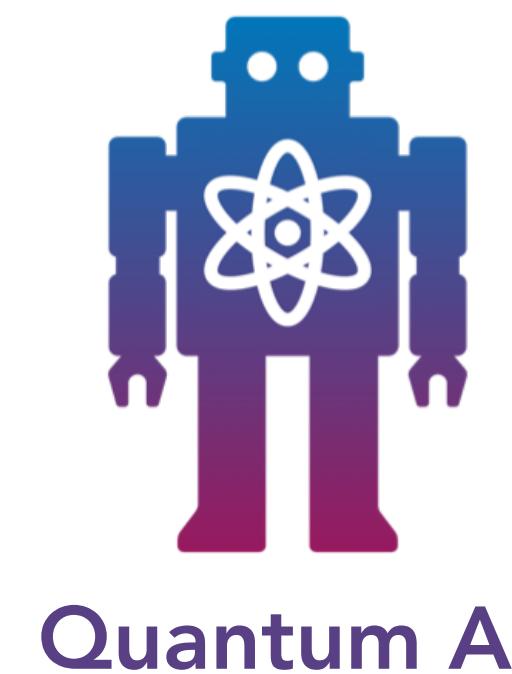


Question:
How can quantum AI
discover phases of
matter on its own?

Discovering New Phases of Matter



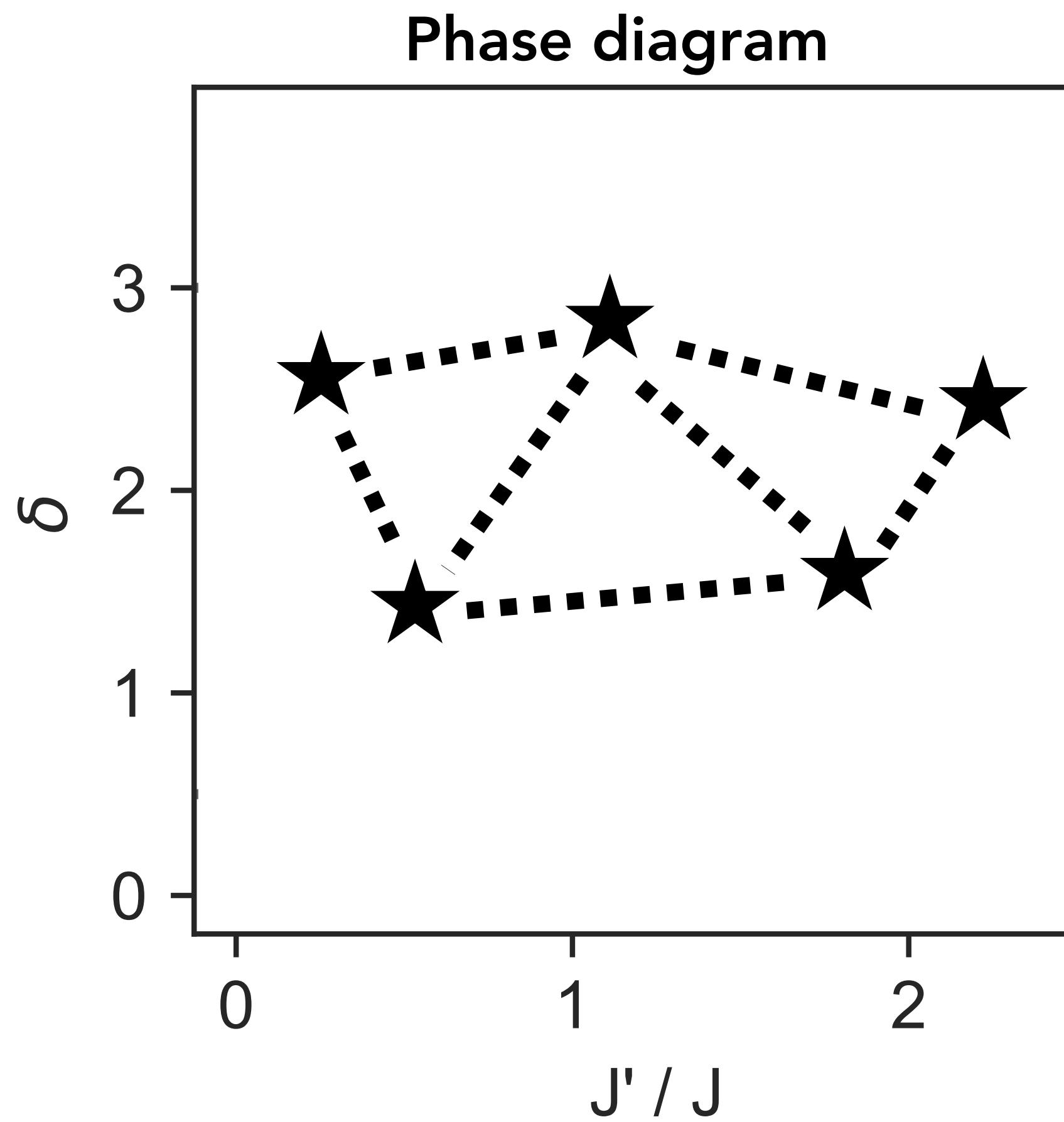
★ : ground states we found on QC



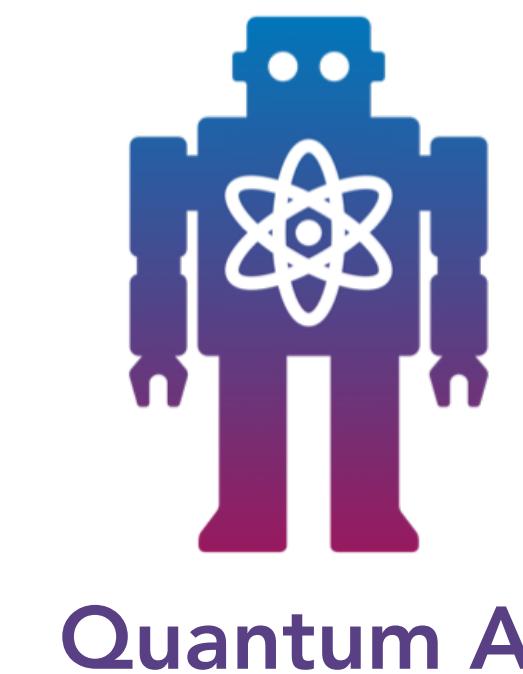
Question:

How can quantum AI
discover phases of
matter on its own?

Discovering New Phases of Matter



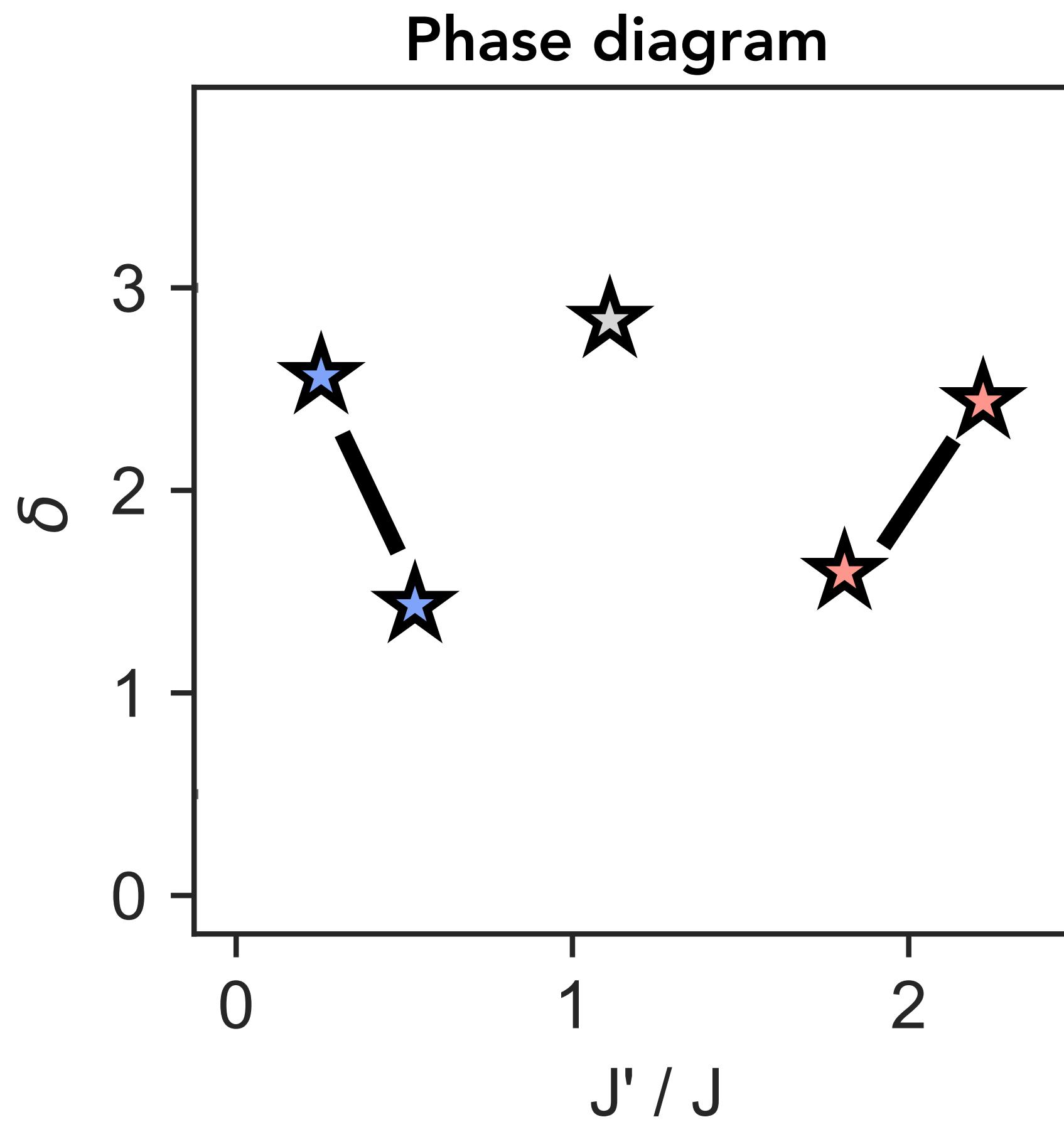
★ : ground states we found on QC



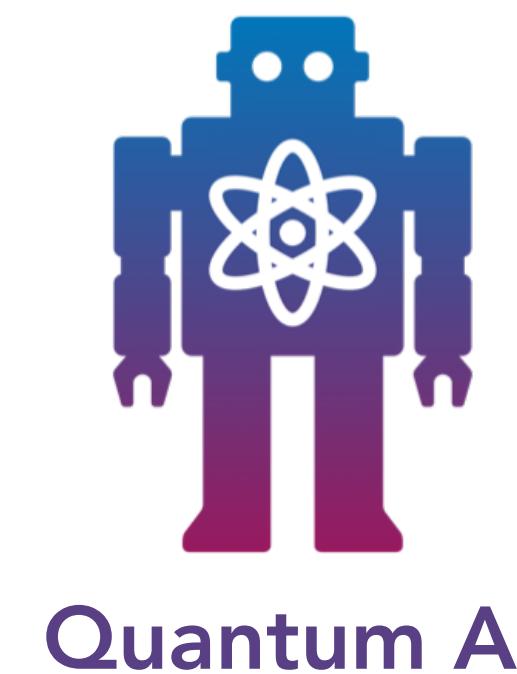
Question:

Can quantum AI tell if
two states are in the
same phase or not?

Discovering New Phases of Matter



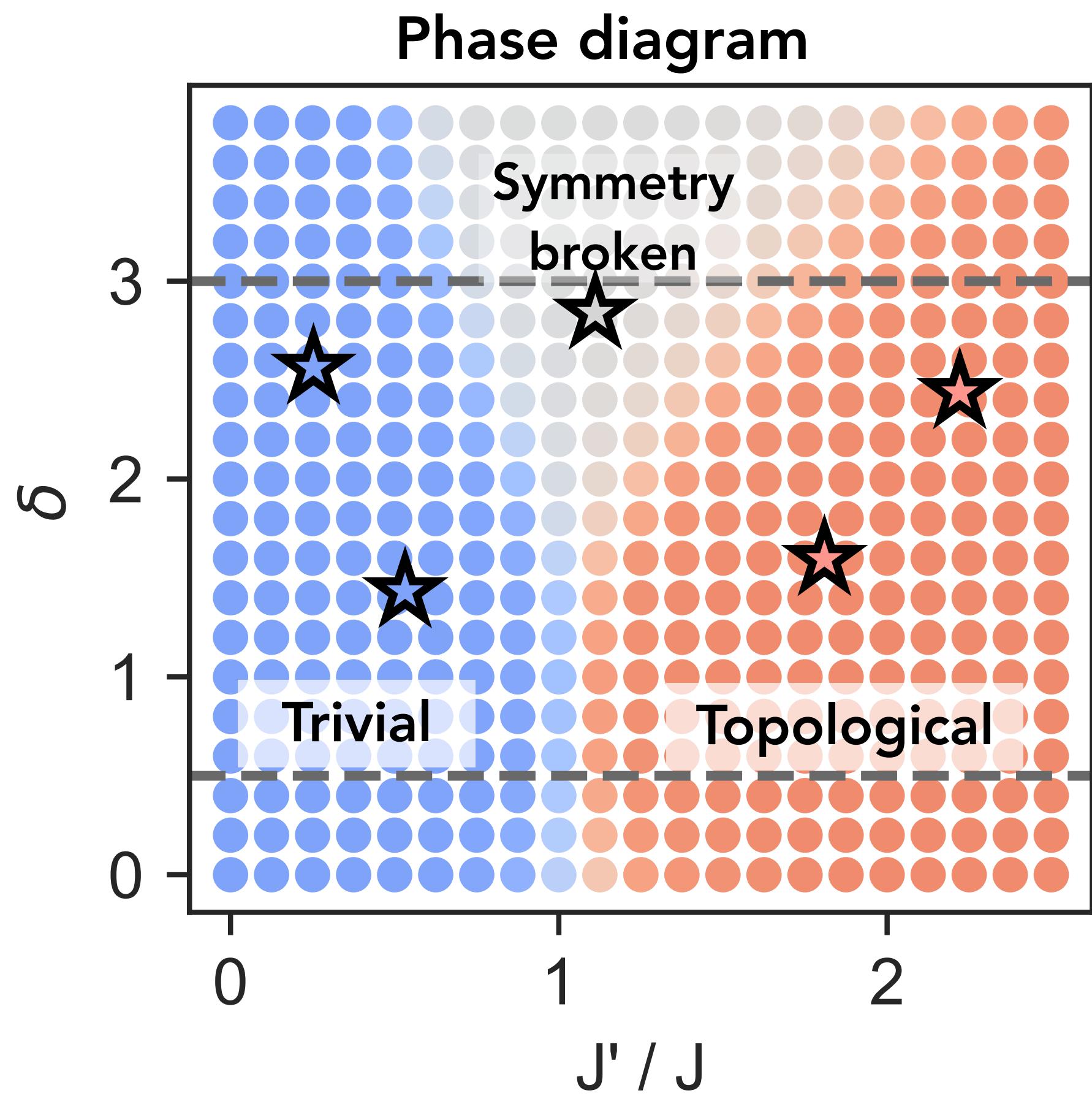
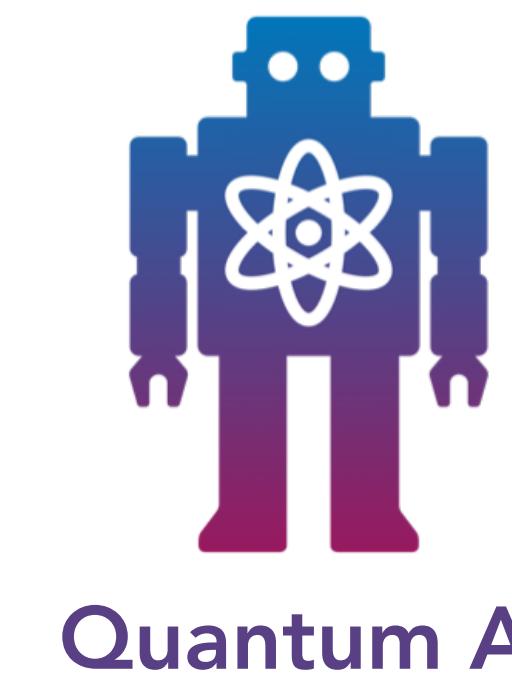
★ : ground states we found on QC



Question:

Can quantum AI tell if
two states are in the
same phase or not?

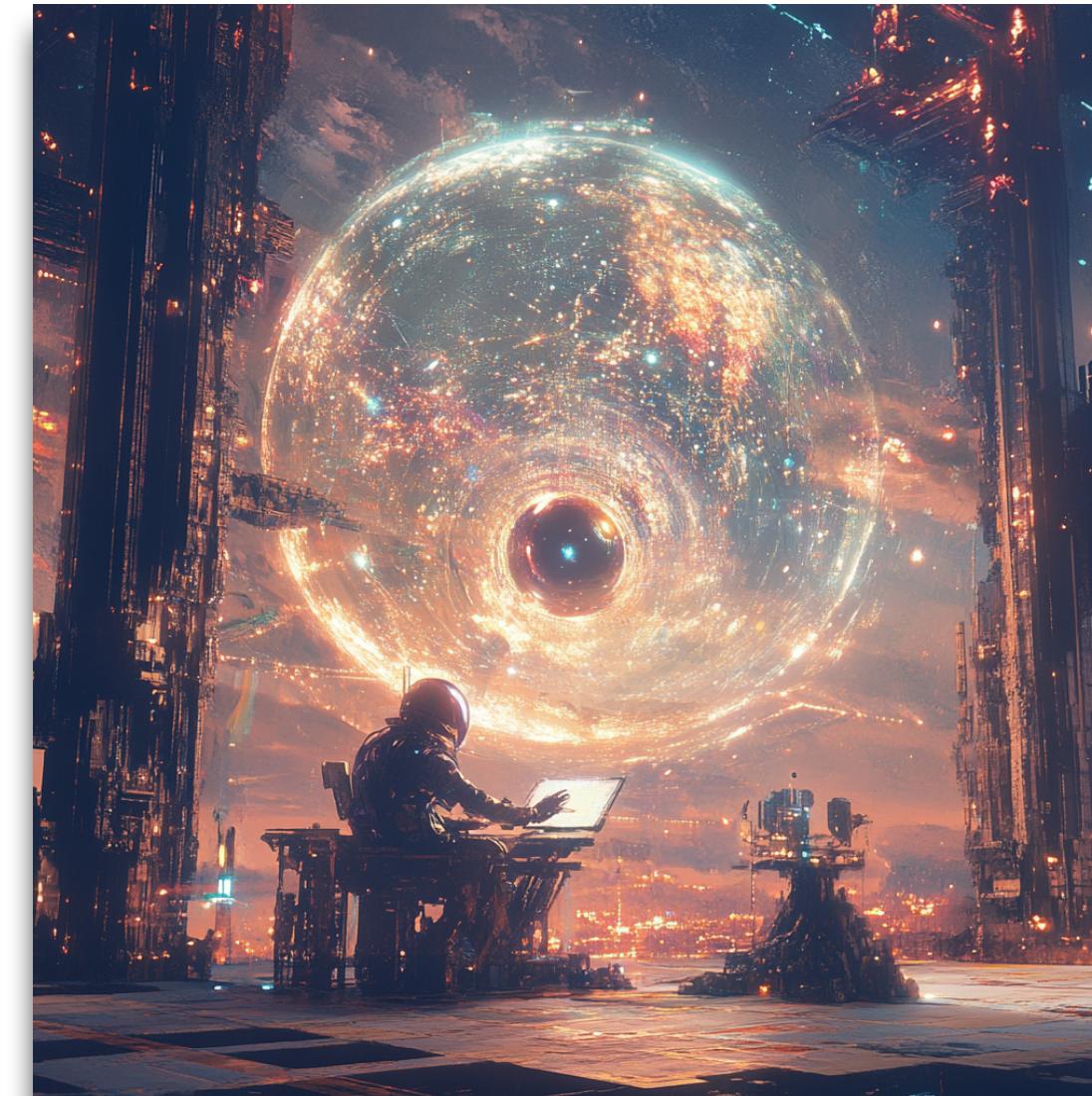
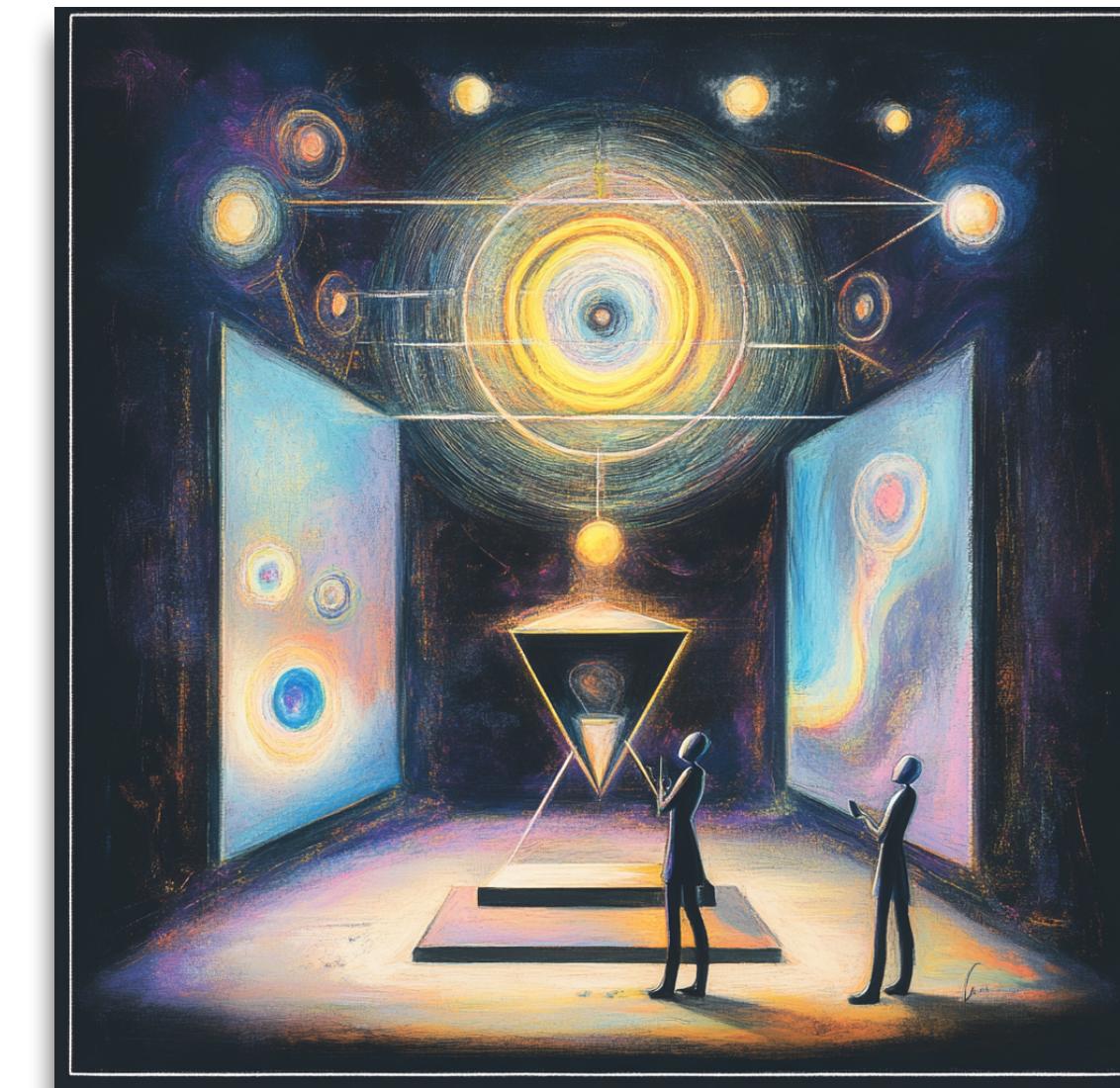
Discovering New Phases of Matter



If yes, quantum AI can
discover new phases
by mapping out the
entire phase diagram.

Long-term ambitions

1. Develop our understanding of learning to accelerate/automate science.
2. Build a **quantum machine** capable of learning and discovering new facets of our universe beyond humans and classical machines.



AI imagination of itself learning and discovering new facets of our quantum universe